
When we have got set of three dimensional points with coordinates X, Y and Z we can
rotate it using usual equations for rotation around x, y and z axis separately. We can also
transform three rotations by multiplication of it's matrices and rotate it at one take:

[1 0 0
0 cos  −sin 
0 sin cos]×[

cos  0 sin 
0 1 0

−sin  0 cos ]×[
cos −sin  0
sin  cos  0

0 0 1]
[coscos −cos sin  sin 

sin sin cos cos sin  −sin sin cos cos cos  −sin cos 
−cos sin cossin sin  cos sin sin sin cos  cos cos ]

X R=X coscos −Y cossinZ sin 
Y R=X sin sin cos cos sin Y −sin sin cos cos cos −Z sin cos 
Z R=X −cos sin cos sin sinY cos sin sin sin cos Z cos cos 

Last three lines are equations of point coordinates after complex rotation around three
axis: x, y and z given by three angles: α, β and γ.
Since we've got points coordinates after rotation, we move the set of points along z axis by
c.a. 400 units, and transform by equations of perspective. We will have set of two
dimensional coordinates of points. For each surface we define four corners and we align a
texture along it. There are four points named P1(x1;y1), P2(x2;y2), P3(x3;y3) and P4(x4;y4), with
coordinates x1, y1, x2, y2, x3, y3, x4, y4.
Another point P12(x12,y12) moves on the way from point P1 to point P2. It moves by linear
interpolation of it's coordinates between point P1 and P2:

x12=x1+yt(x2-x1)
y12=y1+yt(y2-y1)

P
1
(x
1
;y
1
)

P
2
(x
2
;y
2
)

P
3
(x
3
;y
3
)

P
4
(x
4
;y
4
)

P
12
(x
12
;y
12
)

P
34
(x
34
;y
34
)

P
1234
(x
1234
;y
1234
)

y
t

x
t

Exactly the same way moves point P34(x34;y34):

x34=x3+yt(x4-x3)
y34=y3+yt(y4-y3)

xt and yt are indexes of proportion of width and height of a texture. Indexes range from 0
to 1. 0 is left edge of a texture for index xt, 1 is right edge, and 0 is top edge for yt index and
1 for bottom edge. To scale it to a full size of texture multiplicate it by dimension of a
texture. 1920xt and 1080yt are example for a texture of high definition format. Such
multiplicated xt and yt are pixel coordinate on a texture, which has to be drawn in a
position of a point P1234(x1234;y1234) on a screen, which we drop our texture on. Point P1234 is
linear interpolation of a position between previously interpolated points P12 and P34. So, it's
coordinates goes:

x1234=x12+xt(x34-x12)
y1234=y12+xt(y34-y12)

which in basics is:

x1234=x1+yt(x2-x1)+xt[(x3+yt(x4-x3))-(x1+yt(x2-x1))]
y1234=y1+yt(y2-y1)+xt[(y3+yt(y4-y3))-(y1+yt(y2-y1))]

x1234=x1+ytx2-ytx1+xt[(x3+ytx4-ytx3)-(x1+ytx2-ytx1)]
y1234=y1+yty2-yty1+xt[(y3+yty4-yty3)-(y1+yty2-yty1)]

x1234=x1+ytx2-ytx1+xt(x3+ytx4-ytx3-x1-ytx2+ytx1)
y1234=y1+yty2-yty1+xt(y3+yty4-yty3-y1-yty2+yty1)

x1234=x1+ytx2-ytx1+xtx3+xtytx4-xtytx3-xtx1-xtytx2+xtytx1

y1234=y1+yty2-yty1+xty3+xt yty4-xt yty3-xt y1-xt yty2+xt yty1

It would be easy, when we would get position on a texture (coordinates x t and yt) having
point on screen P1234 given. In such a case we wouldn't redraw some points of a texture,
that overlap on the same pixel on a screen after mapping. We would have either no gaps
in texture mapping, that could happen if distance of neighbouring pixels on texture would
lay in distance bigger than one pixel on target screen after the mapping. To do that we
transform equation to get xt and yt on a texture, of calculations for given x1234 and y1234,
belonging to target screen pixel coordinate. Then we could scan target screen with lines
and columns to get texture position for each scanned point, with no overlapping or gaps.

We sort our equation for xt, xtyt and yt:

xt(x3-x1)+xtyt(x4-x3-x2+x1)+yt(x2-x1)=x1234-x1

xt(y3-y1)+xtyt(y4-y3-y2+y1)+yt(y2-y1)=y1234-y1

let it happen, that:

a1=x3-x1

b1= x4-x3-x2+x1

c1= x2-x1

d1=x1234-x1

a2=y3-y1

b2= y4-y3-y2+y1

c2= y2-y1

d2=y1234-y1

Now, the set of our two equations simplifies:

xta1+xtytb1+ytc1=d1

xta2+xtytb2+ytc2=d2

to reduce number of variables we transform the first equation:

x t a1 y t b1 y t c1=d 1

x t=
d 1− y t c1

a1 y tb1

and by substituting xt in second formula we're getting:

d 1− y t c1

a1 y tb1
a2

d 1− y t c1

a1 y t b1
y tb2 y t c2=d 2

d 1a2− y t c1a2

a1 y tb1

d 1 y t b2− y t

2 c1b2

a1 yt b1

a1 y t c2 y t

2b1c2

a1 y tb1
=d 2

d 1a2− y t c1a2d 1 y t b2− y t
2 c1b2a1 y t c2 y t

2b1 c2

a1 y t b1
=d 2

d 1a2− yt c1a2d 1 y tb2− y t
2 c1b2a1 yt c2 y t

2b1 c2=d 2a1 y tb1

d 1a2− y t c1a2d 1 y t b2− y t
2 c1b2a1 y t c2 y t

2b1 c2=d 2a1 y t b1d 2

later, by sorting powers of yt, we get simple quadratic equation:

yt
2(b1c2-c1b2)+yt(a1c2-c1a2+d1b2-b1d2)+(d1a2-d2a1)=0

of which we calculate delta and yt <0;1>.∈

∆=(a1c2-c1a2+d1b2-b1d2)2- 4(b1c2-c1b2)(d1a2-d2a1)

usually it's the root with substracted delta, that falls in desired range:

y t=
−a1 c2c1a2−d 1b2b1d 2−

2b1 c2−c1b2

if b1c2-c1b2=0, or yt is given with equation:

y t=
d 2a1−d 1a2

a1 c2−c1a2d 1b2−b1d 2

If delta is less than zero we don't draw the point, and when yt is outside th <0;1> range we
don't draw it either.

Calculating xt of yt may bring technical problems of division by zero in unexpected
moments, so it is safer to proceed with above elaborate, transforming the second equation:

xta2+xtytb2+ytc2=d2

into yt:

yt=
d 2−xt a2

c 2x tb2

when inserting into:

xta1+xtytb1+ytc1=d1

we get:

x t a1 x t
d 2−x t a2

c2x t b2
b1

d 2−x ta2

c2x t b2
c1=d 1

and after transformation and reduction:

x t a1 c2 x t
2a1b2

c2x tb2

x t d 2b1−x t

2a2b1

c2x tb2

d 2 c1−x t a2c1

c2x t b2
=d 1

xt a1c2 x t
2a1b2x t d 2b1−x t

2a2b1d 2 c1−x t a2 c1

c2 x t b2
=d 1

x ta1 c2x t
2a1b2 x t d 2b1− x t

2a2b1d 2c1− x ta2 c1=d 1c2 x tb2

x t a1 c2x t
2a1b2 x td 2b1− x t

2a2b1d 2 c1− x t a2 c1=d 1 c2x t d 1b2

x ta1 c2x t
2a1b2 x t d 2b1−xt

2a2b1d 2 c1− x ta2 c1−d 1 c2−xt d 1b2=0

x t
2a1b2−a2b1xta1 c2−a2 c1d 2b1−d 1b2d 2 c1−d 1 c2=0

of which we calculate delta and xt <0;1>:∈

∆=(a1c2-c1a2+d1b2-b1d2)2- 4(a1b2-b1a2)(d2c1-d1c2)

x t=
−a1 c2c1a2−d 1b2b1d 2−

2 a1b2−a2b1

If a1b2-b1a2=0, we use formula:

x t=
d 1 c2−d 2 c1

a1c2−c1a2d 1b2−b1d 2

Since we've got xt and yt corresponding to x1234 and y1234 on target screen, we can draw a
point in same colour that is the colour of a pixel x t, yt on texture, obviously after scaling xt

and yt to dimensions of a texture by multiplication by texture's width and height.

Sharky's picture named Kieliszek from GFX compo on Polish Autumn 1993.

