Options and settings¶
Pandas API on Spark has an options system that lets you customize some aspects of its behaviour, display-related options being those the user is most likely to adjust.
Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows
).
You can get/set options directly as attributes of the top-level options
attribute:
>>> import pyspark.pandas as ps
>>> ps.options.display.max_rows
1000
>>> ps.options.display.max_rows = 10
>>> ps.options.display.max_rows
10
The API is composed of 3 relevant functions, available directly from the pandas_on_spark
namespace:
get_option()
/set_option()
- get/set the value of a single option.reset_option()
- reset one or more options to their default value.
Note: Developers can check out pyspark.pandas/config.py for more information.
>>> import pyspark.pandas as ps
>>> ps.get_option("display.max_rows")
1000
>>> ps.set_option("display.max_rows", 101)
>>> ps.get_option("display.max_rows")
101
Getting and setting options¶
As described above, get_option()
and set_option()
are available from the pandas_on_spark
namespace. To change an option, call
set_option('option name', new_value)
.
>>> import pyspark.pandas as ps
>>> ps.get_option('compute.max_rows')
1000
>>> ps.set_option('compute.max_rows', 2000)
>>> ps.get_option('compute.max_rows')
2000
All options also have a default value, and you can use reset_option
to do just that:
>>> import pyspark.pandas as ps
>>> ps.reset_option("display.max_rows")
>>> import pyspark.pandas as ps
>>> ps.get_option("display.max_rows")
1000
>>> ps.set_option("display.max_rows", 999)
>>> ps.get_option("display.max_rows")
999
>>> ps.reset_option("display.max_rows")
>>> ps.get_option("display.max_rows")
1000
option_context
context manager has been exposed through
the top-level API, allowing you to execute code with given option values. Option values
are restored automatically when you exit the with block:
>>> with ps.option_context("display.max_rows", 10, "compute.max_rows", 5):
... print(ps.get_option("display.max_rows"))
... print(ps.get_option("compute.max_rows"))
10
5
>>> print(ps.get_option("display.max_rows"))
>>> print(ps.get_option("compute.max_rows"))
1000
1000
Operations on different DataFrames¶
Pandas API on Spark disallows the operations on different DataFrames (or Series) by default to prevent expensive operations. It internally performs a join operation which can be expensive in general.
This can be enabled by setting compute.ops_on_diff_frames to True to allow such cases. See the examples below.
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.ops_on_diff_frames', True)
>>> psdf1 = ps.range(5)
>>> psdf2 = ps.DataFrame({'id': [5, 4, 3]})
>>> (psdf1 - psdf2).sort_index()
id
0 -5.0
1 -3.0
2 -1.0
3 NaN
4 NaN
>>> ps.reset_option('compute.ops_on_diff_frames')
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.ops_on_diff_frames', True)
>>> psdf = ps.range(5)
>>> psser_a = ps.Series([1, 2, 3, 4])
>>> # 'psser_a' is not from 'psdf' DataFrame. So it is considered as a Series not from 'psdf'.
>>> psdf['new_col'] = psser_a
>>> psdf
id new_col
0 0 1.0
1 1 2.0
3 3 4.0
2 2 3.0
4 4 NaN
>>> ps.reset_option('compute.ops_on_diff_frames')
Default Index type¶
In the pandas API on Spark, the default index is used in several cases, for instance, when Spark DataFrame is converted into pandas-on-Spark DataFrame. In this case, internally pandas API on Spark attaches a default index into pandas-on-Spark DataFrame.
There are several types of the default index that can be configured by compute.default_index_type as below:
sequence: It implements a sequence that increases one by one, by PySpark’s Window function without specifying a partition. Therefore, it can end up with a whole partition in a single node. This index type should be avoided when the data is large. See the example below:
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.default_index_type', 'sequence')
>>> psdf = ps.range(3)
>>> ps.reset_option('compute.default_index_type')
>>> psdf.index
Int64Index([0, 1, 2], dtype='int64')
This is conceptually equivalent to the PySpark example as below:
>>> from pyspark.sql import functions as F, Window
>>> import pyspark.pandas as ps
>>> spark_df = ps.range(3).to_spark()
>>> sequential_index = F.row_number().over(
... Window.orderBy(F.monotonically_increasing_id().asc())) - 1
>>> spark_df.select(sequential_index).rdd.map(lambda r: r[0]).collect()
[0, 1, 2]
distributed-sequence (default): It implements a sequence that increases one by one, by group-by and group-map approach in a distributed manner. It still generates the sequential index globally. If the default index must be the sequence in a large dataset, this index has to be used. See the example below:
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.default_index_type', 'distributed-sequence')
>>> psdf = ps.range(3)
>>> ps.reset_option('compute.default_index_type')
>>> psdf.index
Int64Index([0, 1, 2], dtype='int64')
This is conceptually equivalent to the PySpark example as below:
>>> import pyspark.pandas as ps
>>> spark_df = ps.range(3).to_spark()
>>> spark_df.rdd.zipWithIndex().map(lambda p: p[1]).collect()
[0, 1, 2]
distributed: It implements a monotonically increasing sequence simply by using PySpark’s monotonically_increasing_id function in a fully distributed manner. The values are indeterministic. If the index does not have to be a sequence that increases one by one, this index should be used. Performance-wise, this index almost does not have any penalty compared to other index types. See the example below:
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.default_index_type', 'distributed')
>>> psdf = ps.range(3)
>>> ps.reset_option('compute.default_index_type')
>>> psdf.index
Int64Index([25769803776, 60129542144, 94489280512], dtype='int64')
This is conceptually equivalent to the PySpark example as below:
>>> from pyspark.sql import functions as F
>>> import pyspark.pandas as ps
>>> spark_df = ps.range(3).to_spark()
>>> spark_df.select(F.monotonically_increasing_id()) \
... .rdd.map(lambda r: r[0]).collect()
[25769803776, 60129542144, 94489280512]
Warning
It is very unlikely for this type of index to be used for computing two different dataframes because it is not guaranteed to have the same indexes in two dataframes. If you use this default index and turn on compute.ops_on_diff_frames, the result from the operations between two different DataFrames will likely be an unexpected output due to the indeterministic index values.
Available options¶
Option |
Default |
Description |
---|---|---|
display.max_rows |
1000 |
This sets the maximum number of rows pandas-on-Spark should output when printing out various output. For example, this value determines the number of rows to be shown at the repr() in a dataframe. Set None to unlimit the input length. Default is 1000. |
compute.max_rows |
1000 |
‘compute.max_rows’ sets the limit of the current pandas-on-Spark DataFrame. Set None to unlimit the input length. When the limit is set, it is executed by the shortcut by collecting the data into the driver, and then using the pandas API. If the limit is unset, the operation is executed by PySpark. Default is 1000. |
compute.shortcut_limit |
1000 |
‘compute.shortcut_limit’ sets the limit for a shortcut. It computes specified number of rows and use its schema. When the dataframe length is larger than this limit, pandas-on-Spark uses PySpark to compute. |
compute.ops_on_diff_frames |
False |
This determines whether or not to operate between two different dataframes. For example, ‘combine_frames’ function internally performs a join operation which can be expensive in general. So, if compute.ops_on_diff_frames variable is not True, that method throws an exception. |
compute.default_index_type |
‘distributed-sequence’ |
This sets the default index type: sequence, distributed and distributed-sequence. |
compute.default_index_cache |
‘MEMORY_AND_DISK_SER’ |
This sets the default storage level for temporary RDDs cached in distributed-sequence indexing: ‘NONE’, ‘DISK_ONLY’, ‘DISK_ONLY_2’, ‘DISK_ONLY_3’, ‘MEMORY_ONLY’, ‘MEMORY_ONLY_2’, ‘MEMORY_ONLY_SER’, ‘MEMORY_ONLY_SER_2’, ‘MEMORY_AND_DISK’, ‘MEMORY_AND_DISK_2’, ‘MEMORY_AND_DISK_SER’, ‘MEMORY_AND_DISK_SER_2’, ‘OFF_HEAP’, ‘LOCAL_CHECKPOINT’. |
compute.ordered_head |
False |
‘compute.ordered_head’ sets whether or not to operate head with natural ordering. pandas-on-Spark does not guarantee the row ordering so head could return some rows from distributed partitions. If ‘compute.ordered_head’ is set to True, pandas-on- Spark performs natural ordering beforehand, but it will cause a performance overhead. |
compute.eager_check |
True |
‘compute.eager_check’ sets whether or not to launch some Spark jobs just for the sake of validation. If ‘compute.eager_check’ is set to True, pandas-on-Spark performs the validation beforehand, but it will cause a performance overhead. Otherwise, pandas-on-Spark skip the validation and will be slightly different from pandas. Affected APIs: Series.dot, Series.asof, Series.compare, FractionalExtensionOps.astype, IntegralExtensionOps.astype, FractionalOps.astype, DecimalOps.astype, skipna of statistical functions. |
compute.isin_limit |
80 |
‘compute.isin_limit’ sets the limit for filtering by ‘Column.isin(list)’. If the length of the ‘list’ is above the limit, broadcast join is used instead for better performance. |
plotting.max_rows |
1000 |
‘plotting.max_rows’ sets the visual limit on top-n- based plots such as plot.bar and plot.pie. If it is set to 1000, the first 1000 data points will be used for plotting. Default is 1000. |
plotting.sample_ratio |
None |
‘plotting.sample_ratio’ sets the proportion of data that will be plotted for sample-based plots such as plot.line and plot.area. This option defaults to ‘plotting.max_rows’ option. |
plotting.backend |
‘plotly’ |
Backend to use for plotting. Default is plotly. Supports any package that has a top-level .plot method. Known options are: [matplotlib, plotly]. |