
1

Compile piHPSDR & Fldigi, WSJTX, FreeDV
 from the source-code (Linux)

 (Desktop PC / Laptop / RaspBerry Pi)

Christoph van Wüllen, DL1YCF
Kaiserslautern, Germany

… and lots of others, including my "guinea pigs" have helped to bring this into shape.

Latest change to this document: December 26, 2021

A) Hardware, Software, and Skills required to follow the instructions

in this document.

• An obvious prerequisite is that you have a computer running the Linux operating

system (OS) in order to compile and run piHPSDR there. This can be a Desktop or
laptop PC, or a small single-board computer (SBC) such as the RaspberryPi
(RaspPi). The single but essential difference between the Raspberry Pi on one side,
and a Linux installation on a Desktop PC or laptop on the other hand, is that only
the SBCs have general-purpose input/output (GPIO) connections that can be used
for connecting push-buttons, rotary encoders, Morse keys etc. So it should be clear
that all instructions concerning GPIO only apply to SBCs. Controllers or Morse Keys
to be used with Desktop PCs must use MIDI.

• Since we need to install additional software components, the computer needs an

internet connection, no matter whether this connection is realized by an ethernet
cable or using a WLAN. At the very end, when piHPSDR is up and running, you
most likely need an ethernet cable network connection to connect to the radio.

• It will be necessary that you have the Linux OS running on this computer. In

Appendix A some instructions how to obtain and install Linux from the internet are
given. Installing Linux is actually the most complicated part of the whole business
here, but in most cases you do not need it: if you want to use piHPSDR on a Linux
PC, then most likely you already have one, and if you buy or have bought a RaspPi,
the vendor almost certainly also offers SD cards with a pre-installed Linux OS that
you simply have to insert in the SD card slot. Take care to use an SD card which
holds at least 8 GByte. For RaspPi users: look into Appendix A how to enable the
I2C interface, since you will need it if you want to connect the "piHPSDR controller"
to the RaspPi.

2

• The commands given in this
document must be entered
in a terminal window, so you
must know how to open
such a window. On a
RaspPi, the terminal is be-
hind this symbol in the top
menu bar (see red arrow)
but can also be opened from
the Raspberry menu Acc-
essoires ==> Terminal. A
terminal window opens and
looks like displayed in the figure below.

 In this terminal window, you can now type in commands. Begin with typing in the

command

 echo $HOME

 Throughout this manual, commands to be typed into a terminal window are set in

blue colour with a monospaced font. You have to type the command either exactly
as printed here. Fear not, there is very little you have to type in, because all the
complictated stuff in done in so-called "script files" which come separately (you
should get a file called scripts.tar together with this document).

 As a results of the command echo $HOME, the name of your home directory should

be printed on the screen. This is /home/pi for the RaspPi and /home/user for
Desktop/Laptop Linux computers, where "user" is replaced by your Linux user name
there.

3

• You most likely have to install additional software components, and this requires
administrator privileges. To check if you can execute a command with administrator
privileges, type in the command

 sudo ls -l

 This should list all the files in your home directory. On the RaspPi, this usually works

without further a-do. On other systems, you might get asked the administrator
password before the command is executed (if you do not know this password, you
cannot manage the system and must ask the person who installed the Linux). On
some Desktop/Laptop Linux systems, the security level is even higher and you must
be explicitly entitled to use the "sudo" command. Ask a local Linux guru how to
achieve this (most likely, your user name must be included in the "sudoers" file, but
this may depend on the system and/or the security level imposed there).

• Although no longer required since the "scripts" do everything for you, you should be

able to create and modify text files. I usually do this from within a terminal window
using the "vi" command, but this is really old-school since I am working with
Linux/Unix systems for more than 30 years. I guess if you are reading these
instructions this means that you have not been working with Unix/Linux since the
1980s, and then the learning curve for mastering the vi program is rather steep. So
these instructions are made such that you can equally well use a text editor with a
graphical user interface (GUI). On the RaspPi, a very simple such text editor
("Mousepad") can be found behind the Raspberry: "Accessories->Text Editor". This
opens a new window such that the screen looks like this:

4

In the white area, you can type in text. Type in the text

 Now is the time
 for all brave men
 to come to the party.

 Throughout this document, contents of text files to be created, or parts of text files

that need to be modified, are shown in green color and a mono-spaced font. If you
type in the text, do not forget the Enter key after typing in the last line (such that the
cursor jumps to the beginning of the fourth line). If the text has been entered, you
can go to the menu "File->Save As" of the text editor, and enter a name for the file
(take the name MyCuteTextFile) into the line at the top (behind "Name:"). After
entering the name, the "Save" button at the bottom right of the "Save As" window
becomes active and must be clicked. Close the text editor window and go back to
the terminal window by clicking somewhere in its area and type in the command

 cat MyCuteTextFile

 This should produce as output the text shown in green above. As the last step, we

must be able to modify existing text files. To test if we can do this, open the text
editor again and choose the file named TextFile through the "File->Open" menu by
double-clicking the file. Now you can use the mouse but also the arrow keys on the
keyboard to navigate, say, to a position following the word "men" and add the words
"and women" at the end of that line. Save the modified file through the "File->Save"
menu and close the text editor window. Then activate the terminal window again
and type in the command

 cat MyCuteTextFile

 again. Now the modified text should be printed on the screen.

If you do not succeed in performing these tasks so far, it makes no sense to
continue reading. It is strongly recommended to go to the next local radio
amateur meeting and ask for help. What we have done so far is just very basic
Linux, if you have difficulties you cannot overcome already at this stage you
won't be able to proceed further.

B) Obtain useful scripts to help with installation/compilation

In the next steps we will obtain and install software packages that may or may not be
already present on your system and are needed to compile piHPSDR (and possibly
other programs). To facilitate this, I have prepared a file scripts.tar which contains a
bunch of so-called "shell scripts" that perform the tasks required. (Note to experts:
bundling the scripts in a tar file instead of making them available as separate files
circumvents problems with Windows-type end-of-line markers, missing execute
permissions, etc.) You should obtain this file along with this document. The file
scripts.tar must be placed into the home directory of your "pi" account on the RaspPi.
A straightforward way to do so is to copy it onto an USB stick which is then inserted
into the RPi. So copy the file scripts.tar to the USB stick on your "main" computer
(no matter if it runs Windows, Linux, or MacOS), and then insert the USB stick into the

5

RaspPi. A window pops up where you can choose to open the USB stick in the file
manager (do so!). Then, with a mouse drag+drop the file scripts.tar into the "Home
Folder". To check whether this has succeeded, open a terminal window and type in

 ls -l

This should produce a list of files/directories, with scripts.tar among them. If this is
the case, proceed by typing in the command

 tar xvf scripts.tar

which produces the list of files extracted from scripts.tar on the screen, which all
end in ".sh". These scripts greatly facilitate what follows, since you need not type in
dozens of commands (this is, of course, error-prone) but simply execute a script.

C) Some post-install modifications of the computer setup

Most of this is only necessary in special situations. If you make any changes described
in this section, you should re-boot the system before proceeding with the next section.

C.1) RaspPi only: configure interfaces

Note: Enabling SSH is only necessary if you want to log in into your RaspPi from
another computer, and enabling I2C is only relevant if you use a new (Version 2)
piHPSDR controller. If neither of this applies, you may well skip this.

Use the mouse, and chose from the "Raspberry" menu

Raspberry ==> Preferences ==> RaspberryPi Configuration

You can configure dozens of things there (e.g. the keyboard), but for this I refer to the
internet. What is important here is the "Interfaces" tab, and if you click there, you get
the following window, in which you can enable/disable features by clicking the radio
buttons. I suggest to disable all features except (possibly) SSH and I2C. SSH is needed
if you want to "log in" on your RaspPi from outside (e.g. from another PC), while I2C is
needed if you want to connect the new versions of the "piHPSDR controllers".

6

C.2) Keyboard settings

Note. This probably only applies to users in Germany who have a German keyboard
but nevertheless use the English langage on the RaspPi. The problem may also oc-
cur in other non-english-speaking countries.

If the keyboard layout does not fit, goto to "Raspberry" ==> "Preferences" ==> "Key-
board and Mouse" and select the "Keyboard" tab. In this tab click "Keyboard Lay-
out…" and select the "German" (or whatever layout you have" layout. The change
becomes effective immediately.

C.3) Setting a fixed IP address

Note. This is only necessary if you plan to connect the computer and the radio directly
by an ethernet cable, without a router in-between.

Personally, I like connecting the RaspPi and the ANAN directly by an Ethernet cable,
and have a fixed IP address for both (!) of them. Then I can do QSOs without having
any IP routers or switches involved. For example, I use the fixed IP address
192.168.1.50/24 on my RaspPi and 192.168.1.99/24 on my ANAN. These were chosen
such that the devices can also be run when connected to my router (for example, if the
RaspPi should be connected to the Internet). This is simply performed by the command

 ./ip.sh

This will set 192.168.1.50 as fixed IP address on your RaspPi after the next reboot.
You can choose other addresses by editing the file ip.sh, it should be clear how to do.
Note that even when using a fixed IP address, the RaspPi will use DHCP and obtain
an address from the router if connected. This means, even if you use "direct

7

connection" from computer to radio, you can, from time to time, connect the RaspPi
with the router and so some work that requires internet connection.

C.4) Fixing some GPIO problems (RaspPi only)

Note. This skip must be skipped if you run piHPSDR on a desktop/laptop, and can be
skipped if you do not intend to use the RaspPi GPIO lines (that is, you do not intend to
connect a piHPSDR controller or CW keys or a PTT switch from the microphone to the
GPIO).

When the RaspPi4 replaced the RaspPi3, a new Broadcom I/O chip has been
introduced and some libraries still have problems to correctly configure the GPIO lines.
Therefore a script is provided that lets the RaspPi on each system start configure the
GPIO such that GPIO lines 4–27 are programmed as input lines with internal pull-up
resistor. To do so, simply use the command

 ./gpio.sh

which puts appropriate instructions into the file /boot/config.txt but remember do do
so only on a Raspberry Pi.

C.5) Instrumenting the computer for audio connection between piHPSDR and
digimode programs (WSJTX, Fldigi, FreeDV)

Note. This can all be skipped if you do not plan to run piHPSDR along with a digimode
program such as wsjtx or fldigi on the same computer.

The command is simply

 ./pulseaudio.sh

This creates a file $HOME/.config/pulse/default.pa which configures the pulseaudio
sound system (and restarts pulseaudio). This way, the change becomes effective
immediately and upon each system boot. Two additional so-called "null-sink" audio
output devices with name "SDR-RX" and "SDR-TX" are created which can be used to
transport audio data from one application to the other.
Furthermore, the default input and output devices for pulseaudio are set to "SDR-TX"
(default output device) and "SDR-RX.monitor" (default input device). This is necessary
since both Fldigi and FreeDV can use pulseaudio, but they do not allow to select a
device so the automatically use the default input and output device.

Hint. It has been reported that pulseaudio may do odd things if piHPSDR is running
for a long time. The cure was to locate the following line in the file named
/etc/pulse/default.pa

and locate the line

load-module module-suspend-on-idle

and either delete it or deactivate it by inserting a number sign "#" in the first column.

8

D) Compiling the programs

D.1) Download software

The software is downloaded by the three commands

 ./packages.sh
 ./hamradio.sh
 ./desktop.sh

The first two commands essentially fetch all required software from the internet, so
they make take some time especially if your internet connection is not very fast. The
third commands creates icons for piHPSDR, Fldigi, WSJTX and FreeDV on the
Desktop, such that you can start these programs (after they have been compiled) just
by double-clicking the icon. I just tested this procedure on my RaspPi4, executing
packages.sh took 6 minutes, hamradio.sh took 2 minutes, and desktop.sh less than
a second. The times depend both on the speed of your internet connection and on the
speed of your SD card.

ATTENTION: the command "hamradio.sh" deletes all directories before it loads them
from the internet. So if you have made any modifications (e.g. of Makefiles) and run
the "hamradio.sh" script again all your modifications are lost. Normally, use this
command only once after setting up the system.

D.2) Configure piHPSDR

Note: piHPSDR comes with some options that one can activate or deactivate at
compile time. Most users will not need to anything here and my skip D.2).

There are only three cases where you have to do something, namely

a) you run piHPSDR on a desktop/laptop computer (no GPIO available)
b) you want to include the SoapySDR module for running piHPSDR with an

AdalmPLUTO radio
c) you want to run piHPSDR with RedPitaya-based radios where the SDR application

has to be started via a web interface, and you want piHPSDR to do this for you.

To configure piHPSDR, you have to modify the file Makefile inside the piHPSDR
directory in your home directory, e.g. using the "Mousepad" editor as described in
section A). You have to locate certain lines in the Makefile, change them, and save the
Makefile. In the following I will print the line as it stands in the Makefile in blue, and
how it must look like in green. The recipe is such, that an option that is active can be
deactivated by inserting a number sign in the first column of that line, and an option
that is inactive can be activated be deleting the number sign in the first column.

9

Case a): your Computer does not have GPIO input/output lines. Locate the blue line
below and replace it by the green line following

GPIO_INCLUDE=GPIO
#GPIO_INCLUDE=GPIO

Case b): you want to use SoapySDR radios. Currently, only the AdalmPLUTO is
supported. Locate the blue line below and replace it by the green line following

#SOAPYSDR_INCLUDE=SOAPYSDR
SOAPYSDR_INCLUDE=SOAPYSDR

Case c): you want to use RedPitay based radios. Locate the blue line below and
replace it by the green line following

#STEMLAB_DISCOVERY=STEMLAB_DISCOVERY_NOAVAHI
STEMLAB_DISCOVERY=STEMLAB_DISCOVERY_NOAVAHI

D.3) Compile all the programs

This is all done by the command

 ./compile.sh

This takes about 50 min on my RaspPi4, a large part thereof is required to compile
Fldigi which can only be compiled using a single CPU core due to excessive memory
demand for the compilation of one of the source code files. Note everything is put into
this script. That is, it not only compiles piHPSDR, Fldigi, WSJTX and the FreeDV
program, but also all necessary support libraries including those for SoapySDR, even
if they are not needed or wanted. This is to keep things simple.

10

E) Initial run of piHPSDR

To test the compilation, we make an initial run of piHPSDR without any radios
connected to the computer. To do so, just double-click the piHPSDR icon on the
Desktop. If a window pops up asking you how the program should be executed click
the first tab "Execute" (see section F.2). Then, the piHPSDR window should open and
the screen should look like this

Because it is the first time you started the program, the WDSP library determines
(once and for all) the optimum way to do the fast-Fourier-transforms (this will take
few minutes, there is a progress report on the screen). After this time, the piHPSDR
window looked like this:

Since we have no radios connected (and therefore no devices have been found),
clicking the "Exit" button is the only thing we can do at the moment. If we had connected
radios (for example SOAPY devices such as the Adalm-Pluto via USB, or an ANAN
radio via an ethernet cable) these devices should be "discovered" and the radio can

11

be started via a "Start" button. In the next picture, this situation is show, an HermesLite-
II has been connected via Ethernet:

It takes some time to arrive here, because piHPSDR tries to "discover" HPSDR
protocol1, HPSDR protocol2, and SoapySDR devices. Using the "Protocols" menu by
clicking the tab with that name, one can disable those protocols for which no hardware
is present. Clicking the "Start" button then leads to the following

As you can see, the radio starts by default with two receivers, and both receivers have
the panadapter and the waterfall on display. This can be configured of course within
pihpsdr and is stored in a local file so the next time you start piHPSDR, these settings
are restored.

To complete the test, the piHPSDR program was left (through the Menu==>Exit button
in the top right corner), the Hermeslite-II disconnected and instead, an AdalmPluto was
connected to the RaspPI via an USB cable. Starting piHPSDR again (by double-
clicking its icon) then leads to the following

12

and I cannot say why the same device has been "discovered" three times. This was
reported by the Soapy library. Anyway, clicking the topmost "Start" button then starts
the Pluto radio (I have modified mine such that it can do 144 Mhz)

13

F) Trouble-shooting some issues that occasionally arise

F.1) Too large font sizes (only RaspPi):

Some RaspPi users have reported that the radio window is messed up and looks like
this:

This happens especially when using a large monitor. The reason is, that the system
may automatically choose a large font when using a large monitor, which is not
reasonable for piHPSDR since it is using a fixed-size window. This is easily fixed from
the Raspberry -> Preferences -> Appearance Settings menu, in the window that
opens you click the System bar and change the font to a small one, e.g. FreeSans with
font size 10. Then immediately the piHPSDR window looks OK.

F.2) Desktop icons not working properly

When you double-click the one of the icons on your desktop, then probably the
following dialogue pops up:

This can be suppressed. Simply invoke the file manager (the icon in the top bar to the
right of the browser "earth globe" icon, navigate to the "Desktop" folder in your home
directory and single-click "piHPSDR". Then go to the menu Edit --> Preferences which
looks like this:

14

Simply check the box at the beginning of the line "Don't ask options…", close the menu
and close the file manager. That's it, you have to do this only once. In the (unlikely)
case that you have no file manager icon in the top menu bar, you can open a terminal
window and enter the command

pcmanfm

to start the file manager.

G) Running piHPSDR along with digimode programs (WSJTX,
Fldigi, FreeDV) on the same computer

Note: If your computer has a very small screen (say, less than 1024*768 pixels), then
it makes not much sense to run piHPSDR along with anything, since the screen space
is just too small. This is the case if you have the "piHPSDR controller" or a similar
device, where the RaspPi is put into a small box together with switches and knobs and
a 7-inch touch screen.
In such a case, you may use the VNC software (search the internet). VNC is built into
the RaspPi OS but you need a client for your main (desktop) computer. Then you can
add a second (virtual) screen to your RaspPi and display its contents on your main
computer. If your controller contains a recent RaspPi, changes are also good that you
can connect a second (external HDMI) monitor to it. If you want to do RTTY for
example, you also need to connect a keyboard to the RaspPi,

To run piHPSDR with a digimode program, we need to "connect" piHPSDR and the
digimode program in two ways. The first "connection" is rig control, that is, the digimode
program can change piHPSDR's VFO frequency and the mode, induce RX/TX and
TX/RX transitions in piHPSDR, and so forth. Then we need "audio transport", that is,
RX audio samples (that would normally end up at your headphone) must go to the
digimode program, and audio samples created by the digimode application must go to
piHPSDR and treated within piHPSDR as if they came from a microphone. All

15

necessary ingredients are already there, so we just give screen shots how to adjust
things.

Note: The FreeDV program actually needs four audio connections. Two audio
connections are used for transporting audio samples between piHPSDR and FreeDV
in both directions, and this is the same as for the other digimode programs. In addition,
using FreeDV one also needs a "true" head-phone and microphone. For testing and
producing the screen shots, I connected a USB sound adapter named "iMic USB
Audio" to the RaspPi, and connected a headphone and a microphone to that adapter.

G.1) Rig Control

In piHPSDR, click the RIGCTL
tab in the main menu and
check the "Rigctl Enable" box:
Make sure that the "port
number" is 19090 since we
need this number in the other
programs.

In WSJTX, go to "File ==>
Preferences" and click the
"Radio" tab. Choose
"OpenHPSDR PiHPSDR" as
the rig, enter ":19090" as the
serial port (note the colon at
the beginning of the string)
and enable "CAT" for the PTT
method. Choose "Data/Pkt"
for the mode (this means that
the DIGU mode is chosen in
piHPSDR). If you want to TX
at audio frequencies below
150 or above 2850 Hz, you
also have to choose "Fake It"
in the "Split Operation" field.

Note the other fields (Serial port parameters, Data Bits, Stop Bits, Handshake etc.
have no meaning when using TCP connection and can be left "as is".

16

For FLdigi, go to
"Configuration
==> Config
menu" and
expand the
collapsed list
such that it
shows the "Rig
Control ==>
Hamlib" screen:
Again, choose
the Rig and the
Device (as in wsjtx and as shown in the figure). Then you must check the box at the
top "Use Hamlib" and then can hit the "Initialize" button at the bottom right. Do not
forget to "Save" the configuration then you can "Close" the window.

In the FreeDV program, go to "Tools
==> PTT Config". Check the box
specifying that Hamlib is used, and
choose the Rig model (OpenHPSDR
PiHPSDR) and the TCP port
(:19090, don't forget the leading
colon!). With the button "Test PTT"
you can verify that FreeDV can
induce a RX/TX transition in
piHPDSR.

17

G.2) Audio Transport

piHPSDR must be instrumented in its main RX and TX menus to use the so-called
"null-sink" devices SDR-RX and SDR-TX that were created. Note "SDR-RX" is used in
the RX menu, and "SDR-TX" is used in the TX menu. Since we need a sound input
device in the TX menu, we must use the "monitor" device associated with SDR-TX.

18

For wsjtx everything is in the
"Audio" tab that we can reach
through the File ==> Prefer-
ences menu. Here we use
"SDR-TX" as the output device
since here data is sent to
piHPSDR upon TX, while we
use the monitor device associ-
ated with SDR-RX to capture
the RX audio:

In fldigi, very little
is to do. Going to
the config menu
we have to navi-
gate to the
Soundcard ==>
Devices screen,
check the
PulseAudio box
and leave the
server string
empty. Then
Save & Close.
We can only use the default pulseaudio devices, but our setup in $HOME/.con-
fig/pulse/default.pa has specified SDR-RX.monitor as the default input and SDR-TX
as the default output device, so this is compatible with the choice in piHPSDR (see
above).

19

For FreeDV, you have to
go to Tools ==> Audio
Config. Four audio de-
vices have to be config-
ured, and be sure to use
a 48k sample rate for
each of them. That is,
your USB headset or
USB sound adapter
must support the
48000 Hz sample rate!
In the "Receive" tab,
choose "pulse" for the
"Computer from Radio"
section, and the name of
your USB headset
(sound card) ("iMic USB
audio system" in my
case) for the "Computer
to Headphone" section:

In the "Transmit"
tab, choose
"pulse" in the
"Computer to
Radio" section,
and the name of
your USB headset
or sound card in
the "Microphone to
Computer" section:

Note that FreeDV is very picky about the microphone level. Since I found no
adjustment of the microphone audio level in FreeDV, you have to use the pulseaudio
volume control program "pavucontrol" (enter this as a command in a terminal
window) to adjust the level. Here is an exampe, in my case I had to go to about -20
dB! You see the piHPSR window at the top right, the FreeDV main window at the top
left, and the pavucontrol window in the center. During TX (you go TX by pressing the

20

PTT tab in the top right of the FreeDV window) you see your microphone signal in the
FreeDV spectrum window. Note that the TX signal (to be seen in the piHPSDR
panadapter window) always looks the same, no matter if you whistle into the
microphone or not. It is a "brick wall" spectrum with the characteristic width of the
codec in use (Mode=1600 in the case shown).

21

Appendix A: Installing Linux

Step 1: obtain OS image

RaspPi: An operating system image can be found at the RaspberryPi official web site
https://www.raspberrypi.com/software/operating-systems/. It shows

and clicking the "Download" button in the middle ("Raspberry Pi OS with desktop,
indicated by th red arrow) one obtains a "zipped" OS image file. The last time I tried
this (November 2021), the zipped file had the name 2021-05-07-raspios-buster-
armhf.zip (1.25 GByte) and un-zipping it produced a file with 4 Gbyte and file name
2021-05-07-raspios-buster-armhf.img.

While I am sure that there are other sources of suitable image files, the following
protocol (instructions) have been tested with exactly this one.

Desktop/laptop Linux system: Here it depends on which Linux distribution is being
used. The instructions given here have been tested with the "Debian GNU Linux"
distribution. To this end, a "small" CD-image file (about 350 MByte) with file name
debian-11.0-amd64-netinst.iso has been obtained from the internet page
https://www.debian.org/CD/netinst/ (netinst CD image for the amd64 architecture)
and this file has to be "burnt" onto a CD or DVD, or onto an USB stick if the PC/laptop
supports booting from an USB stick.

22

Step 2: Install operating system

RaspberryPi: The OS image file already contains the complete OS. It has to be written
(or "burned") onto an micro-SD card. In Nov. 2021 I went to an electronics shop and
the smallest SD card I could obtain had a capacity of 32 GByte, this is more than
enough. If you still have some older cards, use a card with at least 8 Gbyte, or else
your filesystem will most likely overflow. How to do burn the OS image to the SD card
varies depending on which computer you are using. Detailed instructions how to "burn"
an image to an SD card from, say, a computer running various operating systems can
be found on the internet, e.g. on the "getting started" page for RaspPi

https://www.raspberrypi.com/documentation/computers/getting-started

Note that "burning" can take several minutes, since the I/O speed is about 10 MB/sec
on most cards (this means you need about 7 minutes to write the OS image to the
micro-SD card). If you have "burnt" an SD card, it then has to be inserted in the SD-
card slot of the RaspPi.

Desktop/laptop computer: Normally one writes the boot image to a USB stick in the
same way one "burns" an SD card, but it is also possibly to use a CD/DVD if you are
"old style". Then simply boot your desktop PC/laptop off the USB stick, then you get a
Debian installation screen from which you choose "Graphical Install". Then proceed
further choosing your localization etc. Because only a small boot image has been
downloaded, additional components are obtained from the internet during installation,
so you clearly need internet connection for the installation.
When the "software selection" screen appears, check the boxes "desktop
environment", "ssh server" and "standard system tools". For the look-and-feel of the
desktop environment, there are several choices, I have checked "LXDE" because this
is also the standard desktop on the RaspPi. Since more than 1000 software packages
are going to be installed, the process may take some time, mainly depending on the
speed of your internet connection.
During the installation, you have to specify the password for the administrator ("root")
account as well as choosing the name and the password of at least one regular user.

Step 3: First-time boot

RaspPi: The micro-SD-card was then inserted in the RaspPi and the machine booted
(with keyboard, mouse and monitor attached). The RaspPi should be connected to a
router with a DHCP server via an Ethernet cable.
The system boots, asks for the country/timezone, and for the password of the default
user "pi". It automatically connects to the internet and updates all installed software to
the most recent version. When this is complete, the system should be restarted.

Desktop/laptop: The system automatically boots after the installation. Because this is
a standard Linux system, it is much more restrictive concerning the allowance for users
to use the sudo command to perform administrator tasks. Normally the file
/etc/sudoers has to be edit to grant the "normal user" such privileges. One possiblity
is to add the line

user ALL=(ALL:ALL) ALL

23

to the file /etc/sudoers where the name of the "normal user" has to used instead of
"user". This gives this user full administrator privileges so the system is potentially
insecure.

Step 4: Upgrade operating system

The "image file" obtained in step 1 is updated on the internet in regular intervals, but
normally you would like to run the most recent version of the operating system. To do
so, open a terminal window and type in the two commands

sudo apt-get update
sudo apt-get upgrade

On the RaspPi this should not be necessary (since this task is normally automatically
performed upon first-time boot from the SD card) but it also can do no harm.
You will get a bunch of output after either of the two commands, and for this step to
work you need internet connection. If you connect the RaspPi and your internet router
by a standard Ethernet cable, you should automatically get internet connection (here I
assume that your router offers DHCP service, but this you also need for all other
computers). Remember that after an OS upgrade, the system should always be
rebooted to make the upgrade effective, so after the second command has completed,
re-boot the system.

Appendix B: Standard installation in a nutshell

In the guide, we have considered many special cases which are not relevant to the
largest part of the users. Therefore here it comes in a nutshell:

a) Setup your RaspPi, preferably with a "virgin" operating system, as described in
Appendix A. Transfer the file scripts.tar (e.g. via an USB stick) to the Home directory
(/home/pi) on your RaspPi.

b) Open a terminal window on the RaspPi and type in the following commands. After
each command, there may be lots of output lines and some commands take long, but
here they are one after the other:

 ./ip.sh <=== skip this using a router between
 Computer and Radio
 ./gpio.sh <=== skip this if not using a RaspPi
 ./pulseaudio.sh
 ./packages.sh
 ./hamradio.sh
 ./desktop.sh
 ./compile.sh

This should produce a "run-able" piHPDSR, Fldigi, WSJTX, and FreeDV program that
can be started by double-clicking the corresponding icon on the Desktop. The desktop
icons should appear almost immediately after you executed the "desktop.sh" script.
Compilation takes most of the time (about 50 min on a RaspPi4). For running piHPSDR
with WSJTX/Fldigi/FreeDV, see sec. G) how to set up the programs accordingly.

24

Appendix C: install scripts

You should never need this section! Obtain, if possible, the scripts as a tar file from the
same source you obtained this file. In the unlikely case you have this file but cannot
locate the file scripts.tar, the scripts are printed here (in fine print). It takes some
basis knowledge to get this files onto a Linux system with proper execute permissions,
to this appendix is "experts only". The scripts are printed here in the order they are
mentioned above.

C.1. Script "ip.sh"

#!/bin/sh

Create a fixed IP address

If not connected to DHCP, the computer will use a fixed IP address
(192.168.1.50 in this example).
If your radio has a fixed IP address in the same subnet, this
makes it easy to use the radio with a direct cable between RaspPi and radio

cd $HOME

cat > etc_network_eth0 << '#EOF'
auto eth0
 iface eth0 inet static
 address 191.168.1.50
 netmask 255.255.255.0
 gateway 192.168.1.1
 dns-nameservers 192.168.1.1
#EOF
sudo cp etc_network_eth0 /etc/network/interfaces.d/eth0

rm etc_network_eth0

25

C.2. Script "gpio.sh"

#!/bin/sh

GPIO-related stuff

Even the latest version of wiringpi does not fully support the RPi 4

Therefore, set all the GPIO pins to "input with pull-up"

cd $HOME

cat > boot_config.txt << '#EOF'
######################################
setup GPIO pins start
######################################
gpio=4-27=ip,pu
######################################
setup GPIO pins end
######################################
#EOF
cat /boot/config.txt >> boot_config.txt
sudo cp boot_config.txt /boot/config.txt

rm boot_config.txt

26

C.3. Script "pulseaudio.sh"

#!/bin/sh

cd $HOME

make (if not yet existing) pulseaudio config director

mkdir -p $HOME/.config/pulse

cat > $HOME/.config/pulse/default.pa << '#EOF'
#!/usr/bin/pulseaudio -nF

.include /etc/pulse/default.pa

load-module module-null-sink sink_name=SDR-RX sink_properties="device.description=SDR-RX"
load-module module-null-sink sink_name=SDR-TX sink_properties="device.description=SDR-TX"

set-default-sink SDR-TX
set-default-source SDR-RX.monitor

#EOF

pulseaudio -k
sleep 2
pulseaudio -D

27

C.4. Script "packages.sh"

#!/bin/sh

Load Raspian packages required to compile + run
programs such as piHPSDR, fldigi, etc.

cd $HOME

Install standard tools and compilers

sudo apt-get --yes install build-essential
sudo apt-get --yes install module-assistant
sudo apt-get --yes install vim
sudo apt-get --yes install make
sudo apt-get --yes install gcc
sudo apt-get --yes install g++
sudo apt-get --yes install gfortran
sudo apt-get --yes install git
sudo apt-get --yes install pkg-config
sudo apt-get --yes install cmake
sudo apt-get --yes install autoconf
sudo apt-get --yes install automake
sudo apt-get --yes install libtool
sudo apt-get --yes install cppcheck
sudo apt-get --yes install dos2unix

Install libraries necessary for piHPSDR

sudo apt-get --yes install libfftw3-dev
sudo apt-get --yes install libgtk-3-dev
sudo apt-get --yes install libasound2-dev
sudo apt-get --yes install libcurl4-openssl-dev
sudo apt-get --yes install libusb-1.0-0-dev
sudo apt-get --yes install libi2c-dev
sudo apt-get --yes install libgpiod-dev
sudo apt-get --yes install libpulse-dev
sudo apt-get --yes install pulseaudio
sudo apt-get --yes install pavucontrol

--
Install standard libraries necessary for SOAPY
--

sudo apt-get install --yes libaio-dev
sudo apt-get install --yes libavahi-client-dev
sudo apt-get install --yes libad9361-dev
sudo apt-get install --yes bison
sudo apt-get install --yes flex
sudo apt-get install --yes libxml2-dev

Install standard libraries necessary for FLDIGI

sudo apt-get install --yes libfltk1.3-dev
sudo apt-get install --yes portaudio19-dev

28

sudo apt-get install --yes libsamplerate0-dev
sudo apt-get install --yes libsndfile1-dev

--
Install standard libraries necessary for WSJTX
--

sudo apt-get install --yes libboost-dev
sudo apt-get install --yes libboost-log-dev
sudo apt-get install --yes libboost-regex-dev
sudo apt-get install --yes qt5-default
sudo apt-get install --yes qttools5-dev
sudo apt-get install --yes qttools5-dev-tools
sudo apt-get install --yes qtmultimedia5-dev
sudo apt-get install --yes libqt5multimedia5-plugins
sudo apt-get install --yes libqt5serialport5-dev
sudo apt-get install --yes libudev-dev

Install standard libraries necessary for FreeDV

sudo apt-get install --yes libspeexdsp-dev
sudo apt-get install --yes sox
sudo apt-get install --yes libwxgtk3.0-gtk-dev
sudo apt-get install --yes libao-dev
sudo apt-get install --yes libgsm-1
sudo apt-get install --yes libsndfile-dev

29

C.5. Script "hamradio.sh"

#!/bin/sh

Download source code (do not yet compile) of some
ham radio software packages, namely

needed for piHPSDR:
===================
WDSP FFT library for SDR programs
piHPSDR SDR program for HPSDR and Soapy radios

only needed if piHPSDR is compiled with the SOAPYSDR option:
==
SoapySDR core core of the SoapySDR layer
libiio needed for Soapy PlutoSDR module
PlutoSDR SoapySDR module for Adalm Pluto

if you want to run fldigi/wsjtx/freedv on the RaspPi:
==
hamlib TRX control libraray
(needed for fldigi and wsjtx)
fldigi digimode program for RTTY, PSK, etc.
wsjtx digimode program for FT8, FT4, JT65, etc.
freedv digital voice program

DELETE all directories we are going to clone
this will delete all your personal setups there!

cd $HOME

yes | rm -rf wdsp
yes | rm -rf pihpsdr
yes | rm -rf SoapySDR
yes | rm -rf libiio
yes | rm -rf SoapyPlutoSDR
yes | rm -rf hamlib
yes | rm -rf fldigi
yes | rm -rf wsjtx

Dowload WDSP library

cd $HOME
git clone https://github.com/dl1ycf/wdsp

Dowload piHPSDR

cd $HOME
git clone https://github.com/dl1ycf/pihpsdr

Download SoapySDR core

cd $HOME
git clone https://github.com/pothosware/SoapySDR.git

30

--
Download libiio (needed for Soapy Pluto)
--

cd $HOME
git clone https://github.com/analogdevicesinc/libiio.git

Download the SoapySDR Pluto module

cd $HOME
git clone https://github.com/pothosware/SoapyPlutoSDR

Download hamlib (use 4.4 release version)
(needed for fldigi,GUI rig controller, and wsjtx)

cd $HOME
git clone https://github.com/hamlib/hamlib
cd hamlib
git checkout 4.4

Download fldigi

cd $HOME
git clone https://git.code.sf.net/p/fldigi/fldigi

Download wsjtx

cd $HOME
git clone https://git.code.sf.net/p/wsjt/wsjtx

Download FreeDV

cd $HOME
rm -rf freedv-gui
git clone https://github.com/drowe67/freedv-gui.git

31

C.6. Script "desktop.sh"

#!/bin/sh

Create Desktop Icons and startup scripts
for piHPSDR, fldigi, wsjtx, FreeDV

cd $HOME

We invoke pihpsdr through a "shell script wrapper".
This way we can take care the HPSDR logo is found
and combine the stdout and stderr output into a single
log file.

cat > $HOME/pihpsdr/pihpsdr.sh << '#EOF'
#!/bin/sh
cd $HOME/pihpsdr
rm -f hpsdr.png
cp release/pihpsdr/hpsdr.png hpsdr.png
./pihpsdr >pihpsdr.log 2>&1
#EOF
chmod 755 $HOME/pihpsdr/pihpsdr.sh

The desktop files are created "the pedestrian way"
then we can insert the actual home dir

FILE=$HOME/Desktop/pihpsdr.desktop
echo "[Desktop Entry]" > $FILE
echo "Name=piHPSDR" >> $FILE
echo "Icon=$HOME/pihpsdr/release/pihpsdr/hpsdr_icon.png" >> $FILE
echo "Exec=$HOME/pihpsdr/pihpsdr.sh" >> $FILE
echo "Type=Application" >> $FILE
echo "Terminal=false" >> $FILE
echo "StartupNotify=false" >> $FILE

FILE=$HOME/Desktop/fldigi.desktop
echo "[Desktop Entry]" > $FILE
echo "Name=Fldigi" >> $FILE
echo "Icon=$HOME/fldigi/data/fldigi-psk.png" >> $FILE
echo "Exec=$HOME//fldigi/src/fldigi" >> $FILE
echo "Type=Application" >> $FILE
echo "Terminal=false" >> $FILE
echo "StartupNotify=false" >> $FILE

FILE=$HOME/Desktop/wsjtx.desktop
echo "[Desktop Entry]" > $FILE
echo "Name=wsjtx" >> $FILE
echo "Icon=$HOME/wsjtx/icons/Unix/wsjtx_icon.png" >> $FILE
echo "Exec=$HOME/wsjtx/bin/wsjtx" >> $FILE
echo "Type=Application" >> $FILE
echo "Terminal=false" >> $FILE
echo "StartupNotify=false" >> $FILE

FILE=$HOME/Desktop/freedv.desktop
echo "[Desktop Entry]" > $FILE
echo "Name=FreeDV" >> $FILE
echo "Icon=$HOME/freedv-gui/contrib/freedv128x128.png" >> $FILE
echo "Exec=$HOME/freedv-gui/build_linux/src/freedv" >> $FILE
echo "Type=Application" >> $FILE
echo "Terminal=false" >> $FILE
echo "StartupNotify=false" >> $FILE

32

C.7. Script "compile.sh"

#!/bin/sh

This cleans up everything in the source code
directories, updates all downloaded source code
trees, and recompiles everything.

NOTE: the OS is not upgraded since the system
should be re-booted at least if the kernel
has been upgraded.

cd $HOME

number of CPUs to use in parallel make
export NPROCS=4

clean up everything

make -C $HOME/pihpsdr clean
make -C $HOME/wdsp clean
make -C $HOME/hamlib clean
make -C $HOME/fldigi clean

rm -rf $HOME/wsjtx/build
rm -rf $HOME/wsjtx/bin
rm -rf $HOME/wsjtx/share

rm -rf $HOME/SoapySDR/build
rm -rf $HOME/libiio/build
rm -rf $HOME/SoapyPlutoSDR/build

rm -rf $HOME/freedv-gui/codec2
rm -rf $HOME/freedv-gui/LPCNet
rm -rf $HOME/freedv-gui/build_linux

Update, compile and install SoapySDR core

cd $HOME/SoapySDR
git pull
mkdir build
cd build
cmake ..
make -j $NPROCS
sudo make install
sudo ldconfig

Update, compile and install libiio

cd $HOME/libiio
git pull

33

mkdir build
cd build
cmake ..
make -j $NPROCS
sudo make install
sudo ldconfig

Update, compile and install the
SoapySDR Pluto module

cd $HOME/SoapyPlutoSDR
git pull
mkdir build
cd build
cmake ..
make -j $NPROCS
sudo make install
sudo ldconfig

Update, compile and install WDSP

cd $HOME/wdsp
git pull
make clean
make -j $NPROCS
sudo make install
sudo ldconfig

Update and compile piHPSDR

cd $HOME/pihpsdr
git pull
make clean
make -j $NPROCS

Update, compile and install hamlib
(no pull since we are at a fixed version)

cd $HOME/hamlib
autoreconf -i
./configure --without-libusb
make -j $NPROCS
sudo make install
sudo ldconfig

Update and compile fldigi

Note: I always have problems with the

34

national language support
therefore I switch it off

"confdialog" needs MUCH memory to compile
so use only one CPU otherwise compilation
may fail due to memory shortage!
(this is the case on 64-bit systems with gcc9)

cd $HOME/fldigi
git pull
make clean
autoreconf -i
./configure --disable-flarq --disable-nls
make

Update and compile wsjtx

Skip generation of documentation and man pages
since we need TONS of further software
(asciidoc, asciidoctor, texlive ...)
to do so.

cd $HOME/wsjtx
git pull
export CC=gcc
export CXX=g++
export FC=gfortran
mkdir bin
TARGET=$PWD
CMFLG="-DWSJT_GENERATE_DOCS=OFF -DWSJT_SKIP_MANPAGES=ON"
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$TARGET $CMFLG ..
cd ..
cmake --build build --target install -j $NPROCS

Update and compile FreeDV

cd $HOME/freedv-gui
git pull
./build_linux.sh

