
1

Compile piHPSDR & Fldigi, WSJTX, FreeDV
 from the source-code (Linux)

 (Desktop PC / Laptop / RaspBerry Pi)

Christoph van Wüllen, DL1YCF
Kaiserslautern, Germany

… and lots of others, including my "guinea pigs" have helped to bring this into shape.

Latest change to this document: May 3, 2023

A) Hardware, Software, and Skills required to follow the instructions

in this document.

• An obvious prerequisite is that you have a computer running the Linux operating

system (OS) in order to compile and run piHPSDR there. This can be a Desktop or
laptop PC, or a small single-board computer (SBC) such as the RaspberryPi
(RaspPi). The single but essential difference between the Raspberry Pi on one side,
and a Linux installation on a Desktop PC or laptop on the other hand, is that only
the SBCs have general-purpose input/output (GPIO) connections that can be used
for connecting push-buttons, rotary encoders, Morse keys etc. So it should be clear
that all instructions concerning GPIO only apply to SBCs. Controllers or Morse Keys
to be used with Desktop PCs must use MIDI.

• Since we need to install additional software components, the computer needs an

internet connection, no matter whether this connection is realized by an ethernet
cable or using a WLAN. At the very end, when piHPSDR is up and running, you
most likely need an ethernet cable network connection to connect to the radio.

• It will be necessary that you have the Linux OS running on this computer. In

Appendix A some instructions how to obtain and install Linux from the internet are
given. Installing Linux is actually the most complicated part of the whole business
here, but in most cases you do not need it: if you want to use piHPSDR on a Linux
PC, then most likely you already have one, and if you buy or have bought a RaspPi,
the vendor almost certainly also offers SD cards with a pre-installed Linux OS that
you simply have to insert in the SD card slot. Take care to use an SD card which
holds at least 16 GByte.

• The commands given in this

document must be entered
in a terminal window, so you
must know how to open
such a window. On a
RaspPi, the terminal is be-
hind this symbol in the top
menu bar (see red arrow)
but can also be opened from

2

the Raspberry menu Accessoires ==> Terminal. A terminal window opens and looks
like displayed in the figure below.

 Note: The background of the screen-shots shown here may be different in your
case. For example, in late 2021 it changed to a picture with water, mountains and a
"burning" sky.

 In this terminal window, you can now type in commands. Begin with typing in the

command

 echo $HOME

 Throughout this manual, commands to be typed into a terminal window are set in

blue colour with a monospaced font. You have to type the command either exactly
as printed here. Fear not, there is very little you have to type in, because all the
complictated stuff in done in so-called "script files" which come separately (you
should get a file called scripts.tar together with this document).

 As a results of the command echo $HOME, the name of your home directory should

be printed on the screen. This is /home/pi for the RaspPi and /home/user for
Desktop/Laptop Linux computers, where "user" is replaced by your Linux user name
there.

• You most likely have to install additional software components, and this requires

administrator privileges. To check if you can execute a command with administrator
privileges, type in the command

 sudo ls -l

 This should list all the files in your home directory. On the RaspPi, this usually works

without further a-do. On other systems, you might get asked the administrator
password before the command is executed (if you do not know this password, you

3

cannot manage the system and must ask the person who installed the Linux). On
some Desktop/Laptop Linux systems, the security level is even higher and you must
be explicitly entitled to use the "sudo" command. Ask a local Linux guru how to
achieve this (most likely, your user name must be included in the "sudoers" file, but
this may depend on the system and/or the security level imposed there).

• Although no longer required since the "scripts" do everything for you, you should be

able to create and modify text files. I usually do this from within a terminal window
using the "vi" command, but this is really old-school since I am working with
Linux/Unix systems for more than 30 years. I guess if you are reading these
instructions this means that you have not been working with Unix/Linux since the
1980s, and then the learning curve for mastering the vi program is rather steep. So
these instructions are made such that you can equally well use a text editor with a
graphical user interface (GUI). On the RaspPi, a very simple such text editor
("Mousepad") can be found behind the Raspberry: "Accessories->Text Editor". This
opens a new window such that the screen looks like this:

In the white area, you can type in text. Type in the text

 Now is the time
 for all brave men
 to come to the party.

 Throughout this document, contents of text files to be created, or parts of text files

that need to be modified, are shown in green color and a mono-spaced font. If you
type in the text, do not forget the Enter key after typing in the last line (such that the
cursor jumps to the beginning of the fourth line). If the text has been entered, you
can go to the menu "File->Save As" of the text editor, and enter a name for the file
(take the name MyCuteTextFile) into the line at the top (behind "Name:"). After

4

entering the name, the "Save" button at the bottom right of the "Save As" window
becomes active and must be clicked. Close the text editor window and go back to
the terminal window by clicking somewhere in its area and type in the command

 cat MyCuteTextFile

 This should produce as output the text shown in green above. As the last step, we

must be able to modify existing text files. To test if we can do this, open the text
editor again and choose the file named TextFile through the "File->Open" menu by
double-clicking the file. Now you can use the mouse but also the arrow keys on the
keyboard to navigate, say, to a position following the word "men" and add the words
"and women" at the end of that line. Save the modified file through the "File->Save"
menu and close the text editor window. Then activate the terminal window again
and type in the command

 cat MyCuteTextFile

 again. Now the modified text should be printed on the screen.

If you do not succeed in performing these tasks so far, it makes no sense to
continue reading. It is strongly recommended to go to the next local radio
amateur meeting and ask for help. What we have done so far is just very basic
Linux, if you have difficulties you cannot overcome already at this stage you
won't be able to proceed further.

B) Obtain useful scripts to help with installation/compilation

In the next steps we will obtain and install software packages that may or may not be
already present on your system and are needed to compile piHPSDR (and possibly
other programs). To facilitate this, I have prepared a file scripts.tar which contains a
bunch of so-called "shell scripts" that perform the tasks required. (Note to experts:
bundling the scripts in a tar file instead of making them available as separate files
circumvents problems with Windows-type end-of-line markers, missing execute
permissions, etc.) You should obtain this file along with this document. Both can be
downloaded from

https://github.com/dl1ycf/pihpsdr-compile-from-sources

but take care to use "raw" download! At the end of this section, it is described how to
get this file onto the RaspPi directly from the internet.

The file scripts.tar must be placed into the home directory of your "pi" account on
the RaspPi. A straightforward way to do so is to copy it onto an USB stick which is then
inserted into the RPi. So copy the file scripts.tar to the USB stick on your "main"
computer (no matter if it runs Windows, Linux, or MacOS), and then insert the USB
stick into the RaspPi. A window pops up where you can choose to open the USB stick
in the file manager (do so!). Then, with a mouse drag+drop the file scripts.tar into
the "Home Folder". To check whether this has succeeded, open a terminal window and
type in

 ls -l

5

This should produce a list of files/directories, with scripts.tar among them. If this is
the case, proceed by typing in the command

 tar xvf scripts.tar

which produces the list of files extracted from scripts.tar on the screen, which all end
in ".sh". These scripts greatly facilitate what follows, since you need not type in dozens
of commands (this is, of course, error-prone) but simply execute a script.

Download these instructions and the scripts file directly onto the RaspPi:
To this end, just type in the commands

 cd $HOME
 git clone https://github.com/dl1ycf/pihpsdr-compile-from-sources
 tar xvf pihpsdr-compile-from-sources/scripts.tar

This creates a folder pihpsdr-compile-from-sources in your home directory, where
you not only find the scripts file but also these instructions both in PDF and OpenOffice
format. The third command has already extracted the shell scripts from the tar file so
you can proceed with the next section.

C) Complete the download of the operating system

In Appendix A, it has been recommended to download only a "small" operating sys-
tem image to be "burnt" onto the SD card. This has been chosen since we need to
load some additional software components anyway, and this is automatically done by
the command

 cd $HOME
 ./packages.sh

This takes some time, depending on the speed of your internet connection and your
SD card, since quite a lot of data is downloaded from the internet and placed in your
file system on your SD card. With a fast internet connection, this step requires less
than 10 minutes.

D) Some post-install modifications of the computer setup

Most of this is only necessary in special situations. If you make any changes described
in this section, you should re-boot the system before proceeding with the next section.

6

D.1) RaspPi only: configure interfaces

Note: Enabling SSH is only necessary if you want to log in into your RaspPi from
another computer of copy files to/from your RaspPi using "scp" or "putty". Enabling I2C
is only relevant if you use a new (Version 2) piHPSDR controller. If neither of this
applies, you may well skip D.1).

Use the mouse, and chose from the "Raspberry" menu

Raspberry ==> Preferences ==> RaspberryPi Configuration

You can configure dozens of things there (e.g. the keyboard), but for this I refer to the
internet. What is important here is the "Interfaces" tab, and if you click there, you get
the following window, in which you can enable/disable features by clicking the radio
buttons. I suggest to disable all features except (possibly) SSH and I2C. SSH is needed
if you want to "log in" on your RaspPi from outside (e.g. from another PC), while I2C is
needed if you want to connect the new versions of the "piHPSDR controllers".

D.2) Keyboard settings

Note. This probably only applies to users in Germany who have a German keyboard
but nevertheless use the English language on the RaspPi. The problem may also oc-
cur in other non-english-speaking countries.

If the keyboard layout does not fit, goto to "Raspberry" ==> "Preferences" ==> "Key-
board and Mouse" and select the "Keyboard" tab. In this tab click "Keyboard Lay-
out…" and select the "German" (or whatever layout you have" layout. The change
becomes effective immediately.

7

D.3) Setting a fixed IP address

Note. This is only necessary if you plan to connect the computer and the radio directly
by an ethernet cable, without a router in-between.

Personally, I like connecting a computer running the SDR program and the actual SDR
hardware directly by an Ethernet cable, and have a fixed IP address for both (!) of
them. Then I can do QSOs without having any IP routers or switches involved. For
example, I use the fixed IP address 192.168.1.50/24 on my RaspPi and
192.168.1.99/24 on my SDR. These were chosen such that the devices can also be
run when connected to my router (for example, if the RaspPi should be connected to
the Internet). This is simply performed by the command

 cd $HOME
 ./ip.sh

This will set 192.168.1.50 as fixed IP address on your RaspPi after the next reboot.
You can choose other addresses by editing the file ip.sh, it should be clear how to do.
Note that even when using a fixed IP address, the RaspPi will use DHCP and obtain
an address from the router if connected. This means, even if you use "direct
connection" from computer to radio, you can, from time to time, connect the RaspPi
with the router and so some work (e.g. updating the operating system or "pulling" the
lastet updates to piHPSDR) that requires internet connection.

D.4) Fixing some GPIO problems (RaspPi only)

Note. This step must be skipped if you run piHPSDR on a desktop/laptop, and can be
skipped if you do not intend to use the RaspPi GPIO lines (that is, you do not intend to
connect a piHPSDR controller or CW keys or a PTT switch to the GPIO).

When the RaspPi4 replaced the RaspPi3, a new Broadcom I/O chip has been
introduced and some libraries still have problems to correctly configure the GPIO lines.
Therefore a script is provided that lets the RaspPi on each system start configure the
GPIO such that GPIO lines 4–27 are programmed as input lines with internal pull-up
resistor. To do so, simply use the command

 cd $HOME
 ./gpio.sh

which puts appropriate instructions into the file /boot/config.txt but remember to do
so only on a Raspberry Pi.

8

D.5) Instrumenting the computer for audio connection between piHPSDR and
digimode programs (WSJTX, Fldigi, FreeDV)

Note. This can all be skipped if you do not plan to run piHPSDR along with a digimode
program (such as WSJTX or Fldigi of FreeDV) on the same computer.

The command is simply

 cd $HOME
 ./pulseaudio.sh

This creates a file $HOME/.config/pulse/default.pa which configures the pulseaudio
sound system. Two additional so-called "null-sink" audio output devices with name
"SDR-RX" and "SDR-TX" are created which can be used to transport audio data from
one application to the other.
Furthermore, the default input and output devices for pulseaudio are set to "SDR-TX"
(default output device) and "SDR-RX.monitor" (default input device). This is necessary
since both Fldigi and FreeDV can use pulseaudio, but they do not allow to select a
device so the automatically use the default input and output device.

Hint. It has been reported that pulseaudio may do odd things if piHPSDR is running
for a long time. The cure was to locate the following line in the file named
/etc/pulse/default.pa

and locate the line

load-module module-suspend-on-idle

and either delete it or deactivate it by inserting a number sign "#" in the first column.
Since the file can only be modified by users with administrator privileges, it is easiest
to do so in three steps, namely copying the file to your home directory first, modifying
it with you favorite text editor, and then copying back:

 cat /etc/pulse/default.pa > $HOME/default.pa
 <edit file $HOME/default.pa>
 sudo cp $HOME/default.pa /etc/pulse/default.pa

E) Compiling the programs

Since we have made changes to the operating system in the preceeding section, it is
a good idea to reboot the system at this point.

E.1) Download "ham radio" software

The "ham radio" software is downloaded by the commands

 cd $HOME
 ./hamradio.sh

9

This command essentially fetches all required software from the internet, and then
creates icons for piHPSDR, Fldigi, WSJTX and FreeDV on the desktop, such that you
can start these programs (after they have been compiled) just by double-clicking the
icon. The amount of data to load is much less than for "packages", so this command
should only take few minutes.

ATTENTION: the command "hamradio.sh" deletes all directories before it loads them
from the internet. If you have made any modifications (e.g. of Makefiles) and run the
"hamradio.sh" script again all your modifications are lost. Normally, use this command
only once after setting up the system.

E.2) Configure piHPSDR

Note: piHPSDR comes with some options that one can activate or deactivate at
compile time. Most users will not need to anything here and my skip D.2).

There are only three cases where you have to do something, namely

a) you run piHPSDR on a desktop/laptop computer (no GPIO available)
b) you want to include the SoapySDR module for running piHPSDR with an

AdalmPLUTO radio
c) you want to run piHPSDR with RedPitaya-based radios where the SDR application

has to be started via a web interface, and you want piHPSDR to do this for you.

To configure piHPSDR, you have to modify the file Makefile inside the piHPSDR
directory in your home directory, e.g. using the "Mousepad" editor as described in
section A). You have to locate certain lines in the Makefile, change them, and save the
Makefile. In the following I will print the line as it stands in the Makefile in blue, and
how it must look like in green. The recipe is such, that an option that is active can be
deactivated by inserting a number sign in the first column of that line, and an option
that is inactive can be activated be deleting the number sign in the first column.

Case a): your computer does not have GPIO input/output lines, or you are using the
existing GPIO lines for a different purpose and do not want piHPSDR to use them. In
either case, locate the blue line below and replace it by the green line following

GPIO_INCLUDE=GPIO
#GPIO_INCLUDE=GPIO

Case b): you want to use SoapySDR radios. Currently, only the AdalmPLUTO is
supported. Locate the blue line below and replace it by the green line following

#SOAPYSDR_INCLUDE=SOAPYSDR
SOAPYSDR_INCLUDE=SOAPYSDR

10

Case c): you want to use RedPitaya based radios. Locate the blue line below and
replace it by the green line following

#STEMLAB_DISCOVERY=STEMLAB_DISCOVERY_NOAVAHI
STEMLAB_DISCOVERY=STEMLAB_DISCOVERY_NOAVAHI

Note on the AdalmPluto: according to one user feedback, the Pluto does not run too
well with a RaspPi Model 3. I have not verified this (I use a Pi-4 for testing), but a
reason might be that the USB ports on the Pi-4 are more powerful. It is also true that
the very high sample rate of the Pluto (768k) produces a substantial CPU load. For this
you have to know that the RPi3 is *much* slower than the RPi4 if it comes to floating
point operations.

E.3) Compile all the programs

This is all done by the command

 cd $HOME
 ./compile.sh

This takes about 50 min on my RaspPi4, a large part thereof is required to compile
Fldigi which can only be compiled using a single CPU core due to excessive memory
demand for the compilation of one of the source code files. Note everything is put into
this script. That is, it not only compiles piHPSDR, Fldigi, WSJTX and the FreeDV
program, but also all necessary support libraries including those for SoapySDR, even
if they are not needed or wanted. This is to keep things simple.

NOTES (as of May 3, 2023)
A) the current version of Fldigi requires that the version of the "autoconf" package is at
least at version 2.71 (released Jan 2021), however, the RPi OS still sticks to an
outdated version 2.69. It is, of course, possible (and not overly complicated) to compile
the autoconf package in an up-to-date version from the, but this probably beyond the
scope of this document which is targeted at Linux beginners, so for the time being I
can only suggest to wait for RPi OS switching to a less outdated autoconf version. Note
that autoconf changes 2.69 ==> 2.71 are quite substantial, and it is difficult to maintain
software packages that work with both versions, so Fldigi was right in doing the
transition, and RaspberryPi-OS is to blame for not offering a current autoconf version
in the repository.

F) Initial run of piHPSDR

To test the compilation, we make an initial run of piHPSDR without any radios
connected to the computer. To do so, just double-click the piHPSDR icon on the
Desktop. If a window pops up asking you how the program should be executed click
the first tab "Execute" (see section F.2). Then, the piHPSDR window should open and
the screen should look like this

11

Because it is the first time you started the program, the WDSP library determines
(once and for all) the optimum way to do the fast-Fourier-transforms (this will take
few minutes, there is a progress report on the screen). After this time, the piHPSDR
window looked like this:

Since we have no radios connected (and therefore no devices have been found),
clicking the "Exit" button is the only thing we can do at the moment. If we had connected
radios (for example SOAPY devices such as the Adalm-Pluto via USB, or an ANAN
radio via an ethernet cable) these devices should be "discovered" and the radio can
be started via a "Start" button. In the next picture, this situation is show, an HermesLite-
II has been connected via Ethernet:

12

It takes some time to arrive here, because piHPSDR tries to "discover" HPSDR
protocol1, HPSDR protocol2, and SoapySDR devices. Using the "Protocols" menu by
clicking the tab with that name, one can disable those protocols for which no hardware
is present. Clicking the "Start" button then leads to the following

As you can see, the radio starts by default with two receivers, and both receivers have
the panadapter and the waterfall on display. This can be configured of course within
pihpsdr and is stored in a local file so the next time you start piHPSDR, these settings
are restored.

To complete the test, the piHPSDR program was left (through the Menu==>Exit button
in the top right corner), the Hermeslite-II disconnected and instead, an AdalmPluto was
connected to the RaspPI via an USB cable. Starting piHPSDR again (by double-
clicking its icon) then leads to the following

13

and I cannot say why the same device has been "discovered" three times. This was
reported by the Soapy library and is most likely related to how Raspian handles internet
interfaces. Anyway, clicking the topmost "Start" button then starts the Pluto radio (I
have modified mine such that it can do 144 Mhz)

14

G) Trouble-shooting some issues that occasionally arise

G.1) Too large font sizes (only RaspPi):

Some RaspPi users have reported that the radio window is messed up and looks like
this:

This happens especially when using a large monitor. The reason is, that the system
may automatically choose a large font when using a large monitor, which is not
reasonable for piHPSDR since it is using a fixed-size window. This is easily fixed from
the Raspberry -> Preferences -> Appearance Settings menu, in the window that
opens you click the System bar and change the font to a small one, e.g. FreeSans with
font size 10. Then immediately the piHPSDR window looks OK.

G.2) Desktop icons not working properly

When you double-click the one of the icons on your desktop, it may happen that the
following dialogue pops up:

This can be suppressed. Simply invoke the file manager (the icon in the top bar to the
right of the browser "earth globe" icon, navigate to the "Desktop" folder in your home
directory and select all the desktop entries. Then go to the menu Edit --> Preferences
which looks like this:

15

Simply check the box at the beginning of the line "Don't ask options…" (indicated by
the red arrow, this has already been checked in the picture), close the menu and close
the file manager. That's it, you have to do this only once. In the (unlikely) case that you
have no file manager icon in the top menu bar, you can open a terminal window and
enter the command

 pcmanfm

to start the file manager.

H) Running piHPSDR along with digimode programs (WSJTX,
Fldigi, FreeDV) on the same computer

Note: If your computer has a very small screen (say, less than 1024*768 pixels), then
it makes not much sense to run piHPSDR along with anything, since the screen space
is just too small. This is the case if you have the "piHPSDR controller" or a similar
device, where the RaspPi is put into a small box together with switches and knobs and
a 7-inch touch screen.
In such a case, you may use the VNC software (search the internet). VNC is built into
the RaspPi OS but you need a client for your main (desktop) computer. Then you can
add a second (virtual) screen to your RaspPi and display its contents on your main
computer. If your controller contains a recent RaspPi, changes are also good that you
can connect a second (external HDMI) monitor to it. If you want to do RTTY for
example, you also need to connect a keyboard to the RaspPi.

To run piHPSDR with a digimode program, we need to "connect" piHPSDR and the
digimode program in two ways. The first "connection" is rig control, that is, the digimode

16

program can change piHPSDR's VFO frequency and the mode, induce RX/TX and
TX/RX transitions in piHPSDR, and so forth. Then we need "audio transport", that is,
RX audio samples (that would normally end up at your headphone) must go to the
digimode program, and audio samples created by the digimode application must go to
piHPSDR and treated within piHPSDR as if they came from a microphone. All
necessary ingredients are already there, so we just give screen shots how to adjust
things.

Note: The FreeDV program actually needs four audio connections. Two audio
connections are used for transporting audio samples between piHPSDR and FreeDV
in both directions, and this is the same as for the other digimode programs (Fldigi,
WSJTX). In addition, to operate with FreeDV one also needs a "true" head-phone for
your ears and a "true" microphone for your voice. For testing and producing the screen
shots, I connected a USB sound adapter named "iMic USB Audio" to the RaspPi, and
connected a headphone and a microphone to that adapter.
NOTE on headphone/microphone connection: If your (SDR) radio has an audio
codec (that is, you can connect headphone and/or microphone to your radio), this is
useless when operating FreeDV. You have to use a sound card for connecting
Headphone/Microphone in any case. Take care this sound card (or this head-set)
supports a sample rate of 48000 Hz since FreeDV seems to require this.
NOTE on HDMI audio output: With the latest ("Bullseye") operating system, I was not
able to use digital HDMI audio output for the "headphone" connection. Connecting the
headphone either to the built-in 3.5mm stereo jack (built-in analog output) or to an
external USB sound case was no problem. This seems to be a minor issue since you
need such an external sound card anyway for microphone input (HDMI does not
provide this).

H.1) Rig Control

In piHPSDR, click the RIGCTL
tab in the main menu and check
the "Rigctl Enable" box:
Make sure that the "port num-
ber" is 19090 since we need this
number in the other programs.

17

In WSJTX, go to "File ==>
Preferences" and click the
"Radio" tab. Choose
"OpenHPSDR PiHPSDR" as
the rig, enter ":19090" as the
serial port (note the colon at
the beginning of the string) and
enable "CAT" for the PTT
method. Choose "Data/Pkt" for
the mode (this means that the
DIGU mode is chosen in
piHPSDR). If you want to TX at
audio frequencies below 150
or above 2850 Hz, you also
have to choose "Fake It" in the
"Split Operation" field.

Note the other fields (Serial port parameters, Data Bits, Stop Bits, Handshake etc.
have no meaning when using TCP connection and can be left "as is".

For FLdigi, go to
"Configuration
==> Config me-
nu" and expand
the collapsed list
such that it
shows the "Rig
Control ==>
Hamlib" screen:
Again, choose
the Rig and the
Device (as in
wsjtx and as shown in the figure). Then you must check the box at the top "Use Hamlib"
and then can hit the "Initialize" button at the bottom right. Do not forget to "Save" the
configuration then you can "Close" the window. When starting Fldigi for the first time,
you automatically arrive at the "Hamlib" screen during setup within the Fldigi
configuration wizard.

18

In the FreeDV program, go to "Tools
==> PTT Config". Check the box
specifying that Hamlib is used, and
choose the Rig model (OpenHPSDR
PiHPSDR) and the TCP port
(:19090, don't forget the leading
colon!). With the button "Test PTT"
you can verify that FreeDV can
induce a RX/TX transition in
piHPDSR.

19

H.2) Audio Transport

piHPSDR must be instrumented in its main RX and TX menus to use the so-called
"null-sink" devices SDR-RX and SDR-TX that were created. Note "SDR-RX" is used in
the RX menu, and "SDR-TX" is used in the TX menu. Since we need a sound input
device in the TX menu, we must use the "monitor" device associated with SDR-TX.

20

For wsjtx everything is in the
"Audio" tab that we can reach
through the File ==> Prefer-
ences menu. Here we use
"SDR-TX" as the output device
since here data is sent to
piHPSDR upon TX, while we
use the monitor device associ-
ated with SDR-RX to capture
the RX audio:

In fldigi, very little
is to do. Going to
the config menu
we have to
navigate to the
Soundcard ==>
Devices screen,
check the Pulse-
Audio box and
leave the server
string empty.
Then Save &
Close. When
starting Fldigi for the first time, you automatically arrive at the "Soundcard/Devices"
screen during setup within the Fldigi configuration wizard.

21

For FreeDV, you have to
go to Tools ==> Audio
Config. Four audio de-
vices have to be config-
ured, and be sure to use
a 48k sample rate for
each of them. That is,
your USB headset or
USB sound adapter
must support the
48000 Hz sample rate!
In the "Receive" tab,
choose "pulse" for the
"Computer from Radio"
section, and the name of
your USB sound card
("iMic USB audio
system" in my case) for
the "Computer to
Headphone" section:

In the "Transmit"
tab, choose "pulse"
in the "Computer to
Radio" section,
and the name of
your USB sound
card in the "Micro-
phone to Compu-
ter" section:

Usually the required sample rate can be selected by the drop-down menu. I
experienced cases where the "Sample Rate:" tab read "NONE" and no sample rate
could be selected. In this case, you have replace the string "NONE" by "48000" just by
clicking in and typing into the text field to the right of "Sample Rate:".
Note that FreeDV is very picky about the microphone level. During my experiment,
when whistling into the microphone, the spectrum displayed a mic signal which has

22

obviously been chopped, and a warning (see red arrow) is on the screen indicating too
high microphone level:

To correct this, go to the
Tools ==> Filter menu.
There you can enable the
mic equalizer (red arrow)
and choose the levels for
"Bass", "Mid", and "Treble"
(red circles). For the
default center frequencies
(all 1 Hz) only the "Treble"
slider has much effect, to
achieve a frequency-inde-
pendent attenuation (see
green curve at the bottom)
set all three sliders to the
same value (-4 dB in my
case).

23

With this attenuation, whistling into the microphone both the spectrum looked OK (max.
amplitude about 0.6) and the "Too high" indicator has vanished (red circle). Most
FreeDV users even recommend lower amplitudes (up to about ±0.4).

24

Appendix A: Installing Linux

Step 1: Obtain OS image

RaspPi: An operating system image can be found at the RaspberryPi official web site
https://www.raspberrypi.com/software/operating-systems/. Scrolling down it shows (as of
May 3, 2023)

and clicking the "Download" button indicated by the red arrow ("Raspberry Pi OS with
desktop) one obtains a "zipped" OS image file. The last time I tried this (May 2023),
the zipped file had the name 2023-02-21-raspios-bullseye-arm64.img.xz (about 1
GByte) and unpackingt this file produced a file with 4.4 Gbyte and file name 023-02-
21-raspios-bullseye-arm64.img. Note that I switched to a 64-bit OS! While this
does not seem necessary, it improves software compatibilty in the future. For example,
FreeDV does not compile on a 32-bit ARM system but it does on a 64-bit one.

These images change every six months or so, I try to keep the implication thereof
"behind the scenes". Some packages have changed name when going from "buster"
(beforce october 2021) to "bullseye" (since then) and I load them both in the script,
which means that there will be error messages concerning non-existing packages
(don't panic).

Desktop/laptop Linux system: Here it depends on which Linux distribution is being
used. The instructions given here have been tested with the "Debian GNU Linux"
distribution. To this end, a "small" CD-image file (about 350 MByte) with file name
debian-11.0-amd64-netinst.iso has been obtained from the internet page
https://www.debian.org/CD/netinst/ (netinst CD image for the amd64 architecture)
and this file has to be "burnt" onto a CD or DVD, or onto an USB stick if the PC/laptop
supports booting from an USB stick.

25

Step 2: Install operating system

RaspberryPi: The OS image file already contains the complete OS. It has to be written
(or "burned") onto an micro-SD card. The smallest cards you can get nowadays have
about 32 GByte, this is more than enough. If you still have some older cards, use a
card with at least 8 Gbyte, or else your filesystem will overflow. The steps in this
document have all been tested with a 16-GByte card. How to do burn the OS image to
the SD card varies depending on which computer you are using. Detailed instructions
how to "burn" an image to an SD card from, say, a computer running various operating
systems can be found on the internet, e.g. on the "getting started" page for RaspPi

https://www.raspberrypi.com/documentation/computers/getting-started

Note that "burning" can take several minutes, since the I/O speed is at most 10
MB/sec on most cards (this means you need about 7 minutes to write the OS image
to the micro-SD card). If you have "burnt" an SD card, it then has to be inserted in
the SD-card slot of the RaspPi.

Desktop/laptop computer: Normally one writes the boot image to a USB stick in the
same way one "burns" an SD card, but it is also possibly to use a CD/DVD if you are
"old style". Then simply boot your desktop PC/laptop off the USB stick, then you get a
Debian installation screen from which you choose "Graphical Install". Then proceed
further choosing your localization etc. Because only a small boot image has been
downloaded, additional components are obtained from the internet during installation,
so you clearly need internet connection for the installation.
When the "software selection" screen appears, check the boxes "desktop
environment", "ssh server" and "standard system tools". For the look-and-feel of the
desktop environment, there are several choices, I have checked "LXDE" because this
is also the standard desktop on the RaspPi. Since more than 1000 software packages
are going to be installed, the process may take some time, mainly depending on the
speed of your internet connection.
During the installation, you have to specify the password for the administrator ("root")
account as well as choosing the name and the password of at least one regular user.

Step 3: First-time boot

RaspPi: The micro-SD-card was then inserted in the RaspPi and the machine booted
(with keyboard, mouse and monitor attached). The RaspPi should be connected to a
router with a DHCP server via an Ethernet cable.
The system boots, asks for the country/timezone, and for the username and password
of the default user. Choose the default "pi" as the use name, since the examples in this
document imply this choice (although you might get a security warning for choosing
such a user name). The system automatically connects to the internet and updates all
installed software to the most recent version. When this is complete, the system must
be restarted/rebooted (this option is automatically offered to you, so just click the
"Restart" button as soon as it is shown).

26

Desktop/laptop: The system automatically boots after the installation. Because this is
a standard Linux system, it is much more restrictive concerning the allowance for users
to use the sudo command to perform administrator tasks. Normally the file
/etc/sudoers has to be edit to grant the "normal user" such privileges. One possiblity
is to add the line

user ALL=(ALL:ALL) ALL

to the file /etc/sudoers where the name of the "normal user" has to used instead of
"user". This gives this user full administrator privileges so the system is
potentially insecure.

Step 4: Upgrade operating system

For non-U.S./non-U.K. users, it is usually a good idea to switch to the local keyboard
setting as described in section D.2. For example, in Germany it will be difficult to type
in the minus sign that occurs in the two commands given below if you have a keyboard
with German layout. The "image file" obtained in step 1 is updated on the internet in
regular intervals, but normally you would like to run the most recent version of the
operating system. To do so, open a terminal window and type in the two commands

sudo apt-get update
sudo apt-get upgrade

On the RaspPi this should not be necessary (since this task is normally automatically
performed upon first-time boot from the SD card) but it also can do no harm. You will
get a bunch of output after either of the two commands, and for this step to work you
need internet connection. If you connect the RaspPi and your internet router by a
standard Ethernet cable, you should automatically get internet connection (here I
assume that your router offers DHCP service, but this you also need for all other
computers). Remember that after an OS upgrade, the system should always be
rebooted to make the upgrade effective, so after the second command has completed,
re-boot the system.

27

Appendix B: Standard installation in a nutshell

In the guide, we have considered many special cases which are not relevant to the
largest part of the users. Therefore, here it comes in a nutshell:

a) Setup your RaspPi, preferably with a "virgin" operating system, as described in
Appendix A. Transfer the file scripts.tar (e.g. via an USB stick) to the home directory
(/home/pi) on your RaspPi. The file scripts.tar contains several shell scripts (files
ending in ".sh", and to extract this file, open a terminal window and type in the
commands

 cd $HOME
 tar xvf scripts.tar

b) These shell scripts now need to be executed. To this end, open a terminal window
on the RaspPi and type in the following commands. As indicated below, the shells
script gpio.sh should only be executed if you are on a RaspberryPi, and the script
ip.sh is only needed if you plan to use a direct cable connection between the computer
and the radio, without any routers/switches involved. After each command, there may
be lots of output lines and some commands take long, but here they are one after the
other:

 cd $HOME
 ./packages.sh
 ./ip.sh <=== skip this if using a router between
 Computer and Radio
 ./gpio.sh <=== skip this if not using a RaspPi
 ./pulseaudio.sh
 ./hamradio.sh
 ./compile.sh

This should produce a "run-able" piHPDSR, Fldigi, WSJTX, and FreeDV program that
can be started by double-clicking the corresponding icon on the Desktop. The desktop
icons should appear almost immediately after you executed the "desktop.sh" script.
Compilation takes most of the time (about 50 min on a RaspPi4). For running piHPSDR
with WSJTX/Fldigi/FreeDV, see sec. H) how to set up the programs accordingly.

