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Chapter 1

Introduction

IDAS is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL gebraic equation Solvers
[39]. This suite consists of CVODE, ARKODE, KINSOL, and IDAS, and variants of these with sensitivity analysis
capabilities, CVODES and IDAS.

IDAS is a general purpose solver for the initial value problem (IVP) for systems of differential-algebraic equations
(DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with Sensitivity capabilities. IDAS is an
extension of the IDA solver within SUNDIALS, itself based on on DASPK [17, 18], but is written in ANSI-standard C
rather than Fortran77. Its most notable features are that, (1) in the solution of the underlying nonlinear system at each
time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov (iterative) methods; and
(2) it is written in a data-independent manner in that it acts on generic vectors and matrices without any assumptions
on the underlying organization of the data. Thus IDAS shares significant modules previously written within CASC at
LLNL to support the ordinary differential equation (ODE) solvers CVODE [25, 42] and PVODE [21, 22], and also the
nonlinear system solver KINSOL [43].

At present, IDAS may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjuction
with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [55], FGMRES (Flexible General-
ized Minimum RESidual) [54], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [59], TFQMR (Transpose-Free Quasi-
Minimal Residual) [34], and PCG (Preconditioned Conjugate Gradient) [36] linear iterative methods. As Krylov meth-
ods, these require little matrix storage for solving the Newton equations as compared to direct methods. However, the
algorithms allow for a user-supplied preconditioner, and, for most problems, preconditioning is essential for an efficient
solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods, and are often the
only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice.
However, users are encouraged to compare all options, especially if encountering convergence failures with GMRES.
Bi-CGFStab and TFQMR have an advantage in storage requirements, in that the number of workspace vectors they
require is fixed, while that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advan-
tage in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods). PCG exhibits
rapid convergence and minimal workspace vectors, but only works for symmetric linear systems.

IDAS is written with a functionality that is a superset of that of IDA. Sensitivity analysis capabilities, both forward
and adjoint, have been added to the main integrator. Enabling forward sensitivity computations in IDAS will result in
the code integrating the so-called sensitivity equations simultaneously with the original IVP, yielding both the solution
and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when the gradients
of relatively few functionals of the solution with respect to many parameters are sought, involves integration of the
original IVP forward in time followed by the integration of the so-called adjoint equations backward in time. IDAS
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of the original IVP
(in particular the adjoint system).
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1.1 Changes from previous versions

1.1.1 Changes in v5.5.1

Added the function IDAClearStopTime () to disable a previously set stop time.
Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

1.1.2 Changes in v5.5.0

Added the functions IDAGetJac(), IDAGetJacCj (), IDAGetJacTime (), IDAGetJacNumSteps () to assist in de-
bugging simulations utilizing a matrix-based linear solver.

Added support for the SYCL backend with RAJA 2022 .x.y.
Fixed an underflow bug during root finding.

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats() function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added support for CUDA v12.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsyc1 flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

1.1.3 Changes in v5.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.1.4 Changes in v5.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections §7.10 and §8.18.
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Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §6.14, §7.11, and §8.19 for more information.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.k

1.1.5 Changes in v5.3.0

Added the function IDAGetUserData () to retrieve the user data pointer provided to IDASetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.1.6 Changes in v5.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated SUNNonlinSolSetPrintLevel_Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNon-
linSolSetPrintLevel_FixedPoint(), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSet-
InfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSet-
PrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLin-
SolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_ SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(),
SUNLinSolSetPrintLevel _SPBCGS() it is recommended to use the SUNLogger API instead. The SUNLinSolSet-
InfoFile_** and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option
SUNDIALS_LOGGING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

Added the function IDAPrintAl1I1Stats() to output all of the integrator, nonlinear solver, linear solver, and other
statistics in one call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value
output files.

Added the function IDASetDetlaCjLSetup() to adjust the parameter that determines when a change in ¢; requires
calling the linear solver setup function.

Added the functions IDASetEtaFixedStepBounds(), IDASetEtaMax(), IDASetEtaMin(), IDASetEtaLow(),
IDASetEtaMinErrFail (), and IDASetEtaConvFail () to adjust various parameters controlling changes in step size.

Added the function IDASetMinStep () to set a minimum step size.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

1.1. Changes from previous versions 3
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A bug was fixed in the functions IDAGetNumNonlinSolvConvFails (), IDAGetNonlinSolvStats (), IDAGetSen-
sNumNonlinSolvConvFails(), and IDAGetSensNonlinSolvStats() where the number of nonlinear solver fail-
ures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed with a stale
Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure was not in-
cluded in the nonlinear solver failure count. These functions have been updated to return the total number of nonlinear
solver failures. As such users may see an increase in the number of failures reported.

The functions IDAGetNumStepSolveFails() and IDAGetNumStepSensSolveFails () have been added to retrieve
the number of failed steps due to a nonlinear solver failure. The counts returned from these functions will match those
previously returned by IDAGetNumNonlinSolvConvFails (), IDAGetNonlinSolvStats(), IDAGetSensNumNon-
linSolvConvFails (), and IDAGetSensNonlinSolvStats().

1.1.7 Changes in v5.1.1

Fixed exported SUNDIALSConfig.cmake.

1.1.8 Changes in v5.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.1.9 Changes in v5.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

4 Chapter 1. Introduction
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SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl () has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAllReduce(), have been
added to support low-synchronization methods for Anderson acceleration.

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials: :hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewliithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

1.1. Changes from previous versions 5
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Deprecations

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()

SUNKLU SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1 SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1 SUNLinSol_SPBCGSSetMaxl1 ()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType ()

SUNSPFGMRSetMaxRestarts
SUNSPGMR

SUNLinSol_SPFGMRSetMaxRestarts()
SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType ()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUNMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

6 Chapter 1. Introduction
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Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS
CLASSICAL_GS
ATimesFn
PSetupFn
PSolveFn
DlsMat
DENSE_COL
DENSE_ELEM
BAND_COL
BAND_COL_ELEM
BAND_ELEM

SUN_MODIFIED_GS
SUN_CLASSICAL_GS
SUNATimesFn
SUNPSetupFn
SUNPSolveFn
SUND1sMat
SUNDLS_DENSE_COL
SUNDLS_DENSE_ELEM
SUNDLS_BAND_COL
SUNDLS_BAND_COL_ELEM
SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):

Deprecated Name New Name
IDASpilsSetLinearSolver IDASetLinearSolver
IDASpilsSetPreconditioner IDASetPreconditioner
IDASpilsSetJacTimes IDASetJacTimes
IDASpilsSetEpsLin IDASetEpsLin
IDASpilsSetIncrementFactor IDASetIncrementFactor
IDASpilsGetWorkSpace IDAGetLinWorkSpace
IDASpilsGetNumPrecEvals IDAGetNumPrecEvals
IDASpilsGetNumPrecSolves IDAGetNumPrecSolves
IDASpilsGetNumLinIters IDAGetNumLinIters
IDASpilsGetNumConvFails IDAGetNumLinConvFails
IDASpilsGetNumJTSetupEvals IDAGetNum]TSetupEvals
IDASpilsGetNumJtimesEvals IDAGetNum]timesEvals
IDASpilsGetNumResEvals IDAGetNumLinResEvals
IDASpilsGetLastFlag IDAGetLastLinFlag
IDASpilsGetReturnFlagName IDAGetLinReturnFlagName
IDASpilsSetLinearSolverB IDASetLinearSolverB
IDASpilsSetEpsLinB IDASetEpsLinB

IDASetIncrementFactorB

IDASpilsSetIncrementFactorB
IDASpilsSetPreconditionerB
IDASpilsSetPreconditionerBS
IDASpilsSetJacTimesB
IDASpilsSetJacTimesBS
IDADlsSetLinearSolver

IDASetPreconditionerB
IDASetPreconditionerBS
IDASetJacTimesB
IDASetJacTimesBS
IDASetLinearSolver

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name New Name
IDADlsSetJacFn IDASetJacFn
IDAD1sGetWorkSpace IDAGetLinWorkSpace
IDAD1sGetNumJacEvals IDAGetNumJacEvals
IDAD1sGetNumResEvals IDAGetNumLinResEvals
IDAD1sGetLastFlag IDAGetLastLinFlag
IDAD1sGetReturnFlagName IDAGetLinReturnFlagName
IDAD1sSetLinearSolverB IDASetLinearSolverB
IDAD1sSetJacFnB IDASetJacFnB
IDAD1sSetJacFnBS IDASetJacFnBS
DenseGETRF SUND1sMat_DenseGETRF
DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS
DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePQOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1sMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUND1sMat_denseScale
denseAddIdentity SUND1sMat_denseAddIdentity
DenseMatvec SUND1sMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF
BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS
BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1sMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS

QRfact SUNQRFact

QRsol SUNQRsol

DlsMat_NewDenseMat
DlsMat_NewBandMat

SUND1lsMat_NewDenseMat
SUND1sMat_NewBandMat

DestroyMat SUND1sMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1lsMat_NewIndexArray
NewRealArray SUND1lsMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray

continues on next page
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Table 1.1 — continued from previous page

Deprecated Name New Name

AddIdentity SUND1lsMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1lsMat_PrintMat
newDenselMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUNDlsMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUND1sMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.1.10 Changes in v4.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and HIP
backends. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel one API Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §8.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess (), to indicate that the next
call to SUNLinSolSolve () will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty () constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

IDAS now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUNLinear-
Solver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

Added the function IDASetN1sResFn() to supply an alternative residual side function for use within nonlinear system
function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package.
A bug was fixed in SUNMatCopyOps () where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.
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1.1.11 Changes in v4.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §6.12 for more details. This module is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §8.8 for more details.

1.1.12 Changes in v4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_RAJA_-
BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.13 Changes in v4.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The NVECTOR_RAJA implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer (), was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer re-
quire the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer () operation, and that the pointer returned by N_VGetDeviceArrayPointer () is a valid CUDA device
pointer.

1.1.14 Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig. cmake file.

Added support for SuperLU_DIST 6.3.0 or newer.

1.1.15 Changes in v4.4.0

Added the function IDASetLSNormFactor() to specify the factor for converting between integrator tolerances
(WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added anew function IDAGetNonlinearSystemData () which advanced users might find useful if providing a custom
SUNNonlinSolSysFn.

This change may cause an error in existing user code. The IDASolveF () function for forward integration with
checkpointing is now subject to a restriction on the number of time steps allowed to reach the output time. This is the
same restriction applied to the IDASoIve () function. The default maximum number of steps is 500, but this may be
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changed using the IDASetMaxNumSteps () function. This change fixes a bug that could cause an infinite loop in the
IDASolveF () function.

The expected behavior of SUNNonlinSolGetNumIters() and SUNNonlinSolGetNumConvFails () in the SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retreived
by calling IDAGetNumNonlinSolvIters(), the cumulative number of failures with IDAGetNumNonlinSolvCon-
vFails (), or both with IDAGetNonlinSolvStats().

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs
such as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA
modules that accept a SUNMemoryHelper object. Refer to §4.7 and §10 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds
managed memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the
N_VMake_Raja() function because that signature was changed. This module remains experimental and is subject to
change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA v11.

1.1.16 Changes in v4.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the ATimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added a new function IDAGetNonlinearSystemData () which advanced users might find useful if providing a custom
SUNNonlinSolSysFn.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUS-
PARSE modules. These modules remain experimental and are subject to change from version to version. In addition,
the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or
some improvement, but a select few may observe minor performance degradation with the default settings. Users are
encouraged to contact the SUNDIALS team about any performance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_-
FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake
option SUNDIALS_BUILD_WITH_MONITORING to use these capabilities.

Added the optional functions IDASetJacTimesResFn() and IDASetJacTimesResFnB() to specify an alternative
residual function for computing Jacobian-vector products with the internal difference quotient approximation.

1.1.17 Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Added a new SUNMatrix implementation, SUNMATRIX CUSPARSE, that interfaces to the sparse matrix implemen-
tation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHOQR linear solver has
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been updated to use this matrix, therefore, users of this module will need to update their code. These modules are still
considered to be experimental, thus they are subject to breaking changes even in minor releases.

The function IDASetLinearSolutionScaling() and IDASetLinearSolutionScalingB was added to enable or
disable the scaling applied to linear system solutions with matrix-based linear solvers to account for a lagged value of
« in the linear system matrix J = % + a%—lg. Scaling is enabled by default when using a matrix-based linear solver.

1.1.18 Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, FSUNDIALSFileOpen() and FSUNDIALSFileClose() for creating/destroying file point-
ers that are useful when using the Fortran 2003 interfaces.

1.1.19 Changes in v4.0.0

1.1.19.1 Build system changes

* Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds
as SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS,
the path to the BLAS library should be included in the *_LIBRARIES variable for the third party library e.g.,
SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.

1.1.19.2 NVECTOR module changes

» Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty ()
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to
be set. Additionally, the function N_VCopyOps () has been added to copy the operation function pointers be-
tween vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.1 for more details.

e Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU +
GPU) or for multi-physics problems that couple distinct MPI-based simulations together. This implementation
is accompanied by additions to user documentation and SUNDIALS examples. See §6.17 and §6.18 for more
details.

* One new required vector operation and ten new optional vector operations have been added to the N_Vector
API. The new required operation, N_VGetLength(), returns the global length of an N_Vector. The optional
operations have been added to support the new NVECTOR_MPIMANYVECTOR implementation. The operation
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N_VGetCommunicator () must be implemented by subvectors that are combined to create an NVECTOR_MPI-
MANYVECTOR, but is not used outside of this context. The remaining nine operations are optional local reduc-
tion operations intended to eliminate unnecessary latency when performing vector reduction operations (norms,
etc.) on distributed memory systems. The optional local reduction vector operations are N_VDotProdLocal (),
N_VMaxNormLocal (), N_VMinLocal (), N_VLI1NormLocal (), N_VWSqrSumLocal (), N_VWSqrSumMaskLo-
cal(), N_VInvTestLocal(), N_VConstrMaskLocal(), and N_VMinQuotientLocal(). If an N_Vector
implementation defines any of the local operations as NULL, then the NVECTOR_MPIMANYVECTOR will call
standard N_Vector operations to complete the computation. See §6.2.4 for more details.

* An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.19 for more details.

e The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_-
RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, 1lib-
sundials_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users
should use the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVEC-
TOR_RAJA modules to replace the functionality. The necessary changes are minimal and should require few
code modifications. See the programs in examples/ida/mpicuda and examples/ida/mpiraja for examples
of how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules
respectively.

* Fixed a memory leak in the NVECTOR_PETSC module clone function.

* Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream
should no longer see default stream synchronizations after memory transfers.

* Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10 for more details.

¢ Added new Fortran 2003 interfaces for most N_Vector modules. See §6 for more details on how to use the
interfaces.

e Added three new N_Vector utility functions, FN_VGetVecAtIndexVectorArray(), FN_VSetVecAtIn-
dexVectorArray(), and FN_VNewVectorArray (), for working with N_Vector arrays when using the Fortran
2003 interfaces. See §6.1.1 for more details.

1.1.19.3 SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMat-
NewEmpty () allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers
in the operations structure initialized to NULL. When used in the constructor for custom objects this function will
ease the introduction of any new optional operations to the SUNMatrix API by ensuring only required opera-
tions need to be set. Additionally, the function SUNMatCopyOps () has been added to copy the operation function
pointers between matrix objects. When used in clone routines for custom matrix objects these functions also will
ease the introduction of any new optional operations to the SUNMatrix API by ensuring all operations are copied
when cloning objects. See §7.1 for more details.

* A new operation, SUNMatMatvecSetup (), was added to the SUNMatrix API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who
have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
ops structure member, matvecsetup, to NULL. See §7.1 for more details.

* The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indicating success/failure may return different values than previously.
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* A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-

DIST library with SUNDIALS. See §7.9 for more details.

¢ Added new Fortran 2003 interfaces for most SUNMatrix modules. See §7 for more details on how to use the

interfaces.

1.1.19.4 SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-

NewEmpty () allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNLinearSolver API by ensuring
only required operations need to be set. See §8.1.8 for more details.

The return type of the SUNLinearSolver API function SUNLinSolLastFlag() has changed from long int
to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID(), that returns a SUNLin-
earSolver_ID for identifying the linear solver module.

The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs. See §8.17 for more details.

Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic(), SUN-
LinSol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon (), to provide user access to the underlying KLU
solver structures. See §8.5 for more details.

Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See §8 for more details on how to use
the interfaces.

1.1.19.5 SUNNonlinearSolver module changes

* A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUNNon-

linSolNewEmpty () allocates an “empty” generic SUNNonlinearSolver with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor for custom
objects this function will ease the introduction of any new optional operations to the SUNNonlinearSolver
API by ensuring only required operations need to be set. See §9.1.7 for more details.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetCon-
vTestFn function in the SUNNonlinearSolver API has been updated to take a void* data pointer as input.
The supplied data pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () function in the SUNNonlinear-
Solver have been changed to be the predicted state and the initial guess for the correction to that state. Addition-
ally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn in the SUNNonlinearSolver
API have been updated to remove unused input parameters. For more information see §9.

Added anew SUNNonlinearSolver implementation, SUNNONLINSOL_PETSC, which interfaces to the PETSc
SNES nonlinear solver API. See §9.5 for more details.

Added new Fortran 2003 interfaces for most SUNNonlinearSolver modules. See §9 for more details on how
to use the interfaces.
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1.1.19.6 IDAS changes
* A bug was fixed in the IDAS linear solver interface where an incorrect Jacobian-vector product increment was
used with iterative solvers other than SUNLINSOL SPGMR and SUNLINSOL SPFGMR.
* Fixed a memeory leak in FIDA when not using the default nonlinear solver.

* Fixed a bug where the IDASolveF () function would not return a root in IDA_NORMAL_STEP mode if the root
occurred after the desired output time.

* Fixed a bug where the IDASolveF () function would return the wrong flag under certrain cirumstances.
* Fixed a bug in IDAQuadReInitB() where an incorrect memory structure was passed to IDAQuadReInit ().

* Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries
of the vector-valued absolute tolerance array, are strictly positive. In this scenario, IDAS will remove at least one
global reduction per time step.

* The IDALS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

e Added the new functions, IDAGetCurrentCj(), IDAGetCurrentY(), IDAGetCurrentYp(), IDACom-
puteY (), and IDAComputeYp () which may be useful to users who choose to provide their own nonlinear solver
implementations.

¢ Added a Fortran 2003 interface to IDAS. See §4.6 for more details.

1.1.20 Changes in v3.1.0

An additional N_Vector implementation was added for the TPETRA vector from the TRILINOS library to facili-
tate interoperability between SUNDIALS and TRILINOS. This implementation is accompanied by additions to user
documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file idas_impl.h is no longer installed. This means users who are directly manipulating
the IDAMem structure will need to update their code to use IDAS’s public APL

Python is no longer required to run make test and make test_install.

1.1.21 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the IDAS library, 1ibsundials_idas.
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1.1.22 Changes in v3.0.1

No changes were made in this release.

1.1.23 Changes in v3.0.0

IDA’s previous direct and iterative linear solver interfaces, IDADLS and IDASPILS, have been merged into a single
unified linear solver interface, IDALS, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how IDALS utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in §8. All IDAS example programs and the standalone linear solver examples have been
updated to use the unified linear solver interface.

The unified interface for the new IDALS module is very similar to the previous IDADLS and IDASPILS interfaces. To
minimize challenges in user migration to the new names, the previous C and Fortran routine names may still be used;
these will be deprecated in future releases, so we recommend that users migrate to the new names soon. Additionally,
we note that Fortran users, however, may need to enlarge their iout array of optional integer outputs, and update the
indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_ where * is the name of the linear solver. The new names
are SUNLinSol_Band(), SUNLinSol_Dense (), SUNLinSol_KLU(), SUNLinSol_LapackBand(), SUNLinSol_La-
packDense (), SUNLinSol_PCG(), SUNLinSol_SPBCGS(), SUNLinSol_SPFGMR(), SUNLinSol_SPGMR(), SUN-
LinSol_SPTFQMR(), and SUNLinSol_SuperLUMT(). Solver-specific “set” routine names have been similarly stan-
dardized. To minimize challenges in user migration to the new names, the previous routine names may still be used;
these will be deprecated in future releases, so we recommend that users migrate to the new names soon. All IDAS

example programs and the standalone linear solver examples have been updated to use the new naming convention.
The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNon-
linearSolver API. This API will ease the addition of new nonlinear solver options and allow for external or user-
supplied nonlinear solvers. The SUNNonlinearSolver API and SUNDIALS provided modules are described in §9
and follow the same object oriented design and implementation used by the N_Vector, SUNMatrix, and SUNLinear-
Solver modules. Currently two SUNNonlinearSolver implementations are provided, SUNNONLINSOL_NEWTON
and SUNNONLINSOL_FIXEDPOINT . These replicate the previous integrator specific implementations of a Newton
iteration and a fixed-point iteration (previously referred to as a functional iteration), respectively. Note the SUNNON-
LINSOL_FIXEDPOINT module can optionally utilize Anderson’s method to accelerate convergence. Example pro-
grams using each of these nonlinear solver modules in a standalone manner have been added and all IDAS example
programs have been updated to use generic SUNNonlinearSolver modules.

By default IDAS uses the SUNNONLINSOL_NEWTON module. Since IDAS previously only used an internal im-
plementation of a Newton iteration no changes are required to user programs and functions for setting the nonlin-
ear solver options (e.g., IDASetMaxNonlinIters()) or getting nonlinear solver statistics (e.g., IDAGetNumNonIin-
SolvIters())remain unchanged and internally call generic SUNNonlinearSolver functions as needed. While SUN-
DIALS includes a fixed-point nonlinear solver module, it is not currently supported in IDAS. For details on attaching
a user-supplied nonlinear solver to IDAS see §5. Additionally, the example program idaRoberts_dns.c explicitly
creates an attaches a SUNNONLINSOL_NEWTON object to demonstrate the process of creating and attaching a non-
linear solver module (note this is not necessary in general as IDAS uses the SUNNONLINSOL_NEWTON module by
default).

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These op-
tional operations are disabled by default and may be activated by calling vector specific routines after creating an
N_Vector (see §6 for more details). The new operations are intended to increase data reuse in vector operations,
reduce parallel communication on distributed memory systems, and lower the number of kernel launches on sys-
tems with accelerators. The fused operations are N_VLinearCombination(), N_VScaleAddMulti(), and N_-
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VDotProdMulti() and the vector array operations are N_VLinearCombinationVectorArray(), N_VScaleVec-
torArray (), N_VConstVectorArray (), N_ViWWrmsNormVectorArray (), N_VWrmsNormMaskVectorArray(), N_-
VScaleAddMultiVectorArray(), and N_VLinearCombinationVectorArray().

If an N_Vector implementation defines any of these operations as NULL, then standard N_Vector operations will
automatically be called as necessary to complete the computation.

Multiple updates to NVECTOR_CUDA were made:
* Changed N_VGetLength_Cuda() to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda() to return the local vector length.
¢ Added N_VGetMPIComm_Cuda() to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

» Changed the N_VMake_Cuda () function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda().

e Added N_VNewManaged_Cuda (), N_VMakeManaged_Cuda(), and N_VIsManagedMemory_Cuda() functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja() to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength_Raja() to return the local vector length.
¢ Added N_VGetMPIComm_Raja() to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPEN-
MPDEYV . See §6.15 for more details.

1.1.24 Changes in v2.2.1

The changes in this minor release include the following:

* Fixed a bug in the CUDA N_Vector where the N_VInvTest () operation could write beyond the allocated vector
data.

* Fixed library installation path for multiarch systems. This fix changes the default library installation path to
CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib. Note CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can be modified.

1.1.25 Changes in v2.2.0
Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA N_Vector library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
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e CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDTALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

* The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPTEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., EVABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.26 Changes in v2.1.2

The changes in this minor release include the following:

» Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

* Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

* Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

* Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

» Updated the SUNMatScaleAdd() and SUNMatScaleAddI () implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the sum, but had the
wrong sparsity pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage.
However, it is still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~.J
manually (with zero entries if needed).

¢ Changed the LICENSE install path to instdir/include/sundials.

1.1.27 Changes in v2.1.1

The changes in this minor release include the following:

* Fixed a potential memory leak in the SUNLINSOL_SPGMR and SUNLINSOL_SPFGMR linear solvers: if “Ini-
tialize” was called multiple times then the solver memory was reallocated (without being freed).

» Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used
(to avoid compiler warnings).

* Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).
* Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.

¢ Added missing #include <stdio.h>in N_Vector and SUNMatrix header files.
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* Added missing prototype for IDASpilsGetNumJTSetupEvals().

* Fixed an indexing bug in the CUDA N_Vector implementation of N_ViirmsNormMask () and revised the RAJA
N_Vector implementation of N_ViWrmsNormMask () to work with mask arrays using values other than zero or
one. Replaced double with realtype in the RAJA vector test functions.

* Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix module (e.g.,
iterative linear solvers).

In addition to the changes above, minor corrections were also made to the example programs, build system, and user
documentation.

1.1.28 Changes in v2.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial()).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.1.29 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and to ease interfacing of custom linear
solvers and interoperability with linear solver libraries. Specific changes include:

* Added generic SUNMatrix module with three provided implementations: dense, banded, and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented API.

* Added example problems demonstrating use of generic SUNMatrix modules.

* Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS native dense,
SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPT-
FQMR, SPFGMR, and PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented API.

* Added example problems demonstrating use of generic SUNLinearSolver modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMatrix and SUNLinearSolver objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARKSPGMR)
since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLinearSolver and
SUNMatrix modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available to CVODE
and CVODES.

¢ Converted all SUNDIALS example problems and files to utilize the new generic SUNMatrix and SUNLinear-
Solver objects, along with updated Dls and Spils linear solver interfaces.

* Added Spils interface routines to ARKODE, CVODE, CVODES, IDAS, and IDAS to allow specification of
a user-provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-
provided Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration
can be amortized between multiple JTimes calls.

Two additional N_Vector implementations were added — one for CUDA and one for RAJA vectors. These vectors are
supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side or residual function evaluation on the device. In addition, these vectors assume the problem fits on one
GPU. For further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These
additions are accompanied by updates to various interface functions and to user documentation.
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All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

Added functions SUNDIALSGetVersion() and SUNDIALSGetVersionNumber () to get SUNDIALS release version
information at runtime.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing FO®_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC() in idas.h.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.30 Changes in v1.3.0

Two additional N_Vector implementations were added — one for Hypre (parallel) ParVector vectors, and one for PETSc
vectors. These additions are accompanied by additions to various interface functions and to user documentation.

Each N_Vector module now includes a function, N_VGetVectorID(), that returns the N_Vector module name.

An optional input function was added to set a maximum number of linesearch backtracks in the initial condition cal-
culation. Also, corrections were made to three Fortran interface functions.

For each linear solver, the various solver performance counters are now initialized to O in both the solver specifica-
tion function and in solver 1init function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

A bug in for-loop indices was fixed in IDAAckpntAllocVectors(). A bug was fixed in the interpolation functions
used in solving backward problems.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done to return integers
from linear solver and preconditioner “free” functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and cor-
rections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR format
when using KLU.

New examples were added for use of the OpenMP vector.
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Minor corrections and additions were made to the IDAS solver, to the examples, to installation-related files, and to the
user documentation.

1.1.31 Changes in v1.2.0

Two major additions were made to the linear system solvers that are available for use with the IDAS solver. First, in
the serial case, an interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the
multi-threaded version of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the
serial version of the N_Vector module. As part of these additions, a sparse matrix (CSC format) structure was added
to IDAS.

Otherwise, only relatively minor modifications were made to IDAS:

In IDARootfind(), a minor bug was corrected, where the input array rootdir was ignored, and a line was added to
break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an illegal input
error for DGBTRF /DGBTRS.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian: With a call to
IDAD1sSetDenseJacFnBS or IDAD1sSetBandJacFnBS, the user can specify a user-supplied Jacobian function of
type IDAD1s***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve ().

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and in various example programs.

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional fourth argument key_-
length was removed, with hardcoded key string lengths passed to all strncmp tests.

In all FIDA examples, integer declarations were revised so that those which must match a C type long int are de-
clared INTEGER*8, and a comment was added about the type match. All other integer declarations are just INTEGER.
Corresponding minor corrections were made to the user guide.

Two new N_Vector modules have been added for thread-parallel computing environments — one for OpenMP, denoted
NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

1.1.32 Changes in v1.1.0

One significant design change was made with this release: The problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output 1sflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray and NewLintArray, for
int and long int arrays, respectively.

Errors in the logic for the integration of backward problems were identified and fixed. A large number of minor errors
have been fixed. Among these are the following: A missing vector pointer setting was added in IDASensLineSrch().
In IDACompleteStep (), conditionals around lines loading a new column of three auxiliary divided difference arrays,
for a possible order increase, were fixed. After the solver memory is created, it is set to zero before being filled. In
each linear solver interface function, the linear solver memory is freed on an error return, and the **Free function
now includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak was fixed in
two of the IDASp***Free functions. In the rootfinding functions IDARcheck1 and IDARcheck2, when an exact zero
is found, the array glo of g values at the left endpoint is adjusted, instead of shifting the t location tlo slightly. In
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the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_MATH, so that the parameter
GENERIC_MATH_LIB is either defined (with no value) or not defined.

1.2

Reading this User Guide

The structure of this document is as follows:

In Chapter §2, we give short descriptions of the numerical methods implemented by IDAS for the solution of ini-
tial value problems for systems of DAEs, along with short descriptions of preconditioning (§2.3) and rootfinding
(8§2.4).

The following chapter describes the structure of the SUNDIALS suite of solvers (§3) and the software organiza-
tion of the IDAS solver (§3.1).

Chapter §5.1 is the main usage document for IDAS for simulation applications. It includes a complete description
of the user interface for the integration of DAE initial value problems. Readers that are not interested in using
IDAS for sensitivity analysis can then skip the next two chapters.

Chapter §5.4 describes the usage of IDAS for forward sensitivity analysis as an extension of its IVP integration
capabilities. We begin with a skeleton of the user main program, with emphasis on the steps that are required
in addition to those already described in Chapter §5.1. Following that we provide detailed descriptions of the
user-callable interface routines specific to forward sensitivity analysis and of the additonal optional user-defined
routines.

Chapter §5.5 describes the usage of IDAS for adjoint sensitivity analysis. We begin by describing the IDAS
checkpointing implementation for interpolation of the original IVP solution during integration of the adjoint
system backward in time, and with an overview of a user’s main program. Following that we provide complete
descriptions of the user-callable interface routines for adjoint sensitivity analysis as well as descriptions of the
required additional user-defined routines.

Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, as well as details on the N_Vector implementations provided with SUNDIALS.

Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS.

Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

Chapter §9 describes the SUNNonlinearSolver API and nonlinear solver implementations shared among the
various components of SUNDIALS.

Finally, in the appendices, we provide detailed instructions for the installation of IDAS, within the structure of
SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from IDAS functions
(Appendix §12).
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1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2023, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.
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Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
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Chapter 2

Mathematical Considerations

IDAS solves the initial-value problem (IVP) for a DAE system of the general form

F(ta y7y) = Oa y(to) =Y, y(to) = yO (21)

where y, 7, and F are vectors in RY, ¢ is the independent variable, §y = dy/dt, and initial values o, 5o are given.
Often ¢t is time, but it certainly need not be.

Additionally, if (2.1) depends on some parameters p € RV, i.e.

F(t,y,9,p) =0

y(to) =w0(p) , y(to) = go(p), 2.2

IDAS can also compute first order derivative information, performing either forward sensitivity analysis or adjoint
sensitivity analysis. In the first case, IDAS computes the sensitivities of the solution with respect to the parameters p,
while in the second case, IDAS computes the gradient of a derived function with respect to the parameters p.

2.1 Initial Condition

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors yy and g are
both initialized to satisfy the DAE residual F'(¢o, yo, o) = 0. For a class of problems that includes so-called semi-
explicit index-one systems, IDAS provides a routine that computes consistent initial conditions from a user’s initial
guess [18]. For this, the user must identify sub-vectors of y (not necessarily contiguous), denoted y4 and y,, which
are its differential and algebraic parts, respectively, such that F' depends on ¢4 but not on any components of 3,. The
assumption that the system is “index one” means that for a given ¢ and y,, the system F'(¢, y, §) = 0 defines y, uniquely.
In this case, a solver within IDAS computes y,, and y4 at t = ty, given y4 and an initial guess for y,. A second available
option with this solver also computes all of y(to) given §(to); this is intended mainly for quasi-steady-state problems,
where y(to) = 0 is given. In both cases, IDAS solves the system F'(tg, 4o, ¥o) = 0 for the unknown components of yq
and g, using a Newton iteration augmented with a line search globalization strategy. In doing this, it makes use of the
existing machinery that is to be used for solving the linear systems during the integration, in combination with certain
tricks involving the step size (which is set artificially for this calculation). For problems that do not fall into either of
these categories, the user is responsible for passing consistent values, or risks failure in the numerical integration.
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2.2 IVP solution

The integration method used in IDAS is the variable-order, variable-coefficient BDF (Backward Differentiation For-
mula), in fixed-leading-coefficient form [13]. The method order ranges from 1 to 5, with the BDF of order ¢ given by
the multistep formula

q
Z Qp iYn—i = hnyn ) (23)
=0

where y,, and g,, are the computed approximations to y(t,,) and ¢(t,, ), respectively, and the step size is h,, = t,, —t,—1.
The coefficients o, ; are uniquely determined by the order ¢, and the history of the step sizes. The application of the
BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic system to be solved at each step:

q
=0

In the process of controlling errors at various levels, IDAS uses a weighted root-mean-square norm, denoted || - ||wrms
for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative and
absolute tolerances input by the user, namely

1

© 7 Ttol - lyi| + atol; 2:5)

Because 1/, represents a tolerance in the component y;, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.2.1 Nonlinear Solve

By default IDAS solves (2.4) with a Newton iteration but IDAS also allows for user-defined nonlinear solvers (see
Chapter §9). Each Newton iteration requires the solution of a linear system of the form

J[yn(m+1) - yn(m)] = _G(yn(m)) ; (2.6)
where ¥, (,,) is the m-th approximation to y,,. Here J is some approximation to the system Jacobian
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where o = v, o/ hy,. The scalar o changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDAS provides several choices, including the option
of a user-supplied linear solver (see Chapter §8). The linear solvers distributed with SUNDIALS are organized in
two families, a direct family comprising direct linear solvers for dense, banded, or sparse matrices and a spils family
comprising scaled preconditioned iterative (Krylov) linear solvers. The methods offered through these modules are as
follows:

* dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [56] and an interface to the oneMKL library [2],

* band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

* sparse direct solver interfaces to various libraries, including KLU [3, 26], SuperLU_MT [8, 28, 48], SuperLU_-
Dist [7, 35, 49, 50], and cuSPARSE [6],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with or without
restarts,
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* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver with or
without restarts,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,
* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or
* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and a preconditioned
Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear iteration,
and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [16]. For the spils linear solvers with IDAS, preconditioning is allowed only on
the left (see §2.3). Note that the dense, band, and sparse direct linear solvers can only be used with serial and threaded
vector representations.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations, with a coefficient & in place of ain J.
However, in the case that a matrix-free iterative linear solver is used, the default Newton iteration is an Inexact Newton
iteration, in which J is applied in a matrix-free manner, with matrix-vector products Jov obtained by either difference
quotients or a user-supplied routine. In this case, the linear residual JAy + G is nonzero but controlled. With the
default Newton iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
* the value & at the last update is such that /& < 3/5 or oo/& > 5/3, or
» anon-fatal convergence failure occurred with an out-of-date J or P.

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with the slow convergence
due to infrequent updates. To reduce storage costs on an update, Jacobian information is always reevaluated from
scratch.

The default stopping test for nonlinear solver iterations in IDAS ensures that the iteration error ¥, — Yy () is small
relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

5, \ T
R‘(&) ’

where the 6, = Y (m) — Yn(m—1) is the correction at iteration m = 1,2,. ... The nonlinear solver iteration is halted
if R > 0.9. The convergence test at the m-th iteration is then

S|l < 0.33, 2.8)

where S = R/(R — 1) whenever m > 1 and R < 0.9. The user has the option of changing the constant in the
convergence test from its default value of 0.33. The quantity .S is set to S = 20 initially and whenever J or P is
updated, and it is reset to S = 100 on a step with « # @&. Note that at m = 1, the convergence test (2.8) uses an
old value for S. Therefore, at the first nonlinear solver iteration, we make an additional test and stop the iteration if
[|61]] < 0.33-10~* (since such a d; is probably just noise and therefore not appropriate for use in evaluating R). We
allow only a small number (default value 4) of nonlinear iterations. If convergence fails with J or P current, we are
forced to reduce the step size h,,, and we replace h,, by h, 7. (by default n.y = 0.25). The integration is halted after a
preset number (default value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations
and the maximum number of nonlinear convergence failures can be changed by the user from their default values.

When an iterative method is used to solve the linear system, to minimize the effect of linear iteration errors on the
nonlinear and local integration error controls, we require the preconditioned linear residual to be small relative to the
allowed error in the nonlinear iteration, i.e., || P~!(Jz + G)|| < 0.05 - 0.33. The safety factor 0.05 can be changed by
the user.
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When the Jacobian is stored using either the SUNMATRIX_DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian J defined in (2.7) can be either supplied by the user or IDAS can compute J internally by difference quotients. In
the latter case, we use the approximation

Ji' = [Fz-(t,y—&—ojej,y—k aajej) — Fi(t,y,y)]/Jj, with
oj = VU max {|y;], |hy;|, 1/W;} sign(h;),

where U is the unit roundoff, & is the current step size, and W is the error weight for the component y; defined by
(2.5). We note that with sparse and user-supplied matrix objects, the Jacobian must be supplied by a user routine.

In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are approximated by
Jv=[F(t,y + ov,y + aov) = F(t,y,9)l/o,

where the increment o = 1/||v||. As an option, the user can specify a constant factor that is inserted into this expression
for o.

2.2.2 Local Error Test

During the course of integrating the system, IDAS computes an estimate of the local truncation error, LTE, at the n-th
time step, and requires this to satisfy the inequality

|ILTE||wrms < 1.

Asymptotically, LTE varies as h9t! at step size h and order g, as does the predictor-corrector difference A,, = y,, —
Yn(0)- Thus there is a constant C' such that

LTE = CA,, + O(h17?),

and so the norm of LTE is estimated as |C|- || A, ||. In addition, IDAS requires that the error in the associated polynomial
interpolant over the current step be bounded by 1 in norm. The leading term of the norm of this error is bounded by
C'||A,,|| for another constant C'. Thus the local error test in IDAS is

max{|C|, C}|A,|| < 1. (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the test (2.9), if these
have been so identified.

2.2.3 Step Size and Order Selection

In IDAS, the local error test is tightly coupled with the logic for selecting the step size and order. First, there is an initial
phase that is treated specially; for the first few steps, the step size is doubled and the order raised (from its initial value
of 1) on every step, until (a) the local error test (2.9) fails, (b) the order is reduced (by the rules given below), or (c)
the order reaches 5 (the maximum). For step and order selection on the general step, IDAS uses a different set of local
error estimates, based on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders
¢ equalto g, g — 1 (if ¢ > 1), ¢ — 2 (if ¢ > 2), or ¢ + 1 (if ¢ < 5), there are constants C'(¢’) such that the norm of the
local truncation error at order ¢’ satisfies

LTE(¢) = C(¢)||6(d’ + 1)|| + O(h?*?),

where ¢(k) is a modified divided difference of order k that is retained by IDAS (and behaves asymptotically as h*).
Thus the local truncation errors are estimated as ELTE(q’) = C(¢')||#(¢’ + 1)|| to select step sizes. But the choice of
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order in IDAS is based on the requirement that the scaled derivative norms, ||h*y(*)||, are monotonically decreasing
with k, for k near ¢. These norms are again estimated using the ¢(k), and in fact

|h? 1y @D ~ T(¢') = (¢ + 1)ELTE(¢) .

The step/order selection begins with a test for monotonicity that is made even before the local error test is performed.
Namely, the orderisresetto ¢’ = ¢ —1if (a) g =2and T(1) < T(2)/2,0r (b) ¢ > 2 and max{T(¢—1),T(¢g—2)} <
T'(q); otherwise ¢’ = q. Next the local error test (2.9) is performed, and if it fails, the step is redone at order ¢ + ¢’
and a new step size h/. The latter is based on the h9™! asymptotic behavior of ELTE(q), and, with safety factors, is
given by

n=h'/h=0.9/[2ELTE(q)]"/(¢+1) |

The value of 7 is adjusted so that Nmin of < 7 < Niow (by default Nyin of = 0.25 and Mo = 0.9) before setting
h «< h' = nh. If the local error test fails a second time, IDA uses 1) = 7min_of, and on the third and subsequent failures
ituses ¢ = 1 and 7 = Nin_ef- After 10 failures, IDA returns with a give-up message.

As soon as the local error test has passed, the step and order for the next step may be adjusted. No order change is made
if ¢ = g — 1 from the prior test, if ¢ = 5, or if ¢ was increased on the previous step. Otherwise, if the last ¢ + 1 steps
were taken at a constant order ¢ < 5 and a constant step size, IDAS considers raising the order to ¢ + 1. The logic is
as follows:

a. Ifg=1,thensetq=2if T'(2) < T(1)/2.
b. If ¢ > 1 then
esetqg+ q—1ifT(¢g—1) <min{T(q),T(¢+ 1)}, else
e setq+ q+1ifT(¢+ 1) < T(q), otherwise
* leave q unchanged, in thiscase T(¢ — 1) > T'(¢) < T(¢+ 1)

In any case, the new step size h’ is set much as before:
n=h'/h =1/[2ELTE(q)]"/ (4,

The value of 7 is adjusted such that
a. If Nmin_tx < 1 < Nmax_tx> set 7 = 1. The defaults are Nmin_x = 1 and Nmax_tx = 2.
b. If 7 > Nmax_fx, the step size growth is restricted to Nmax tx < N < Mmax With Nmax = 2 by default.

c. If 7 < Mmin_gx, the step size reduction is restricted to Nyin < 7 < Now With Nyin = 0.5 and 76w = 0.9 by
default.

Thus we do not increase the step size unless it can be doubled. If a step size reduction is called for, the step size will
be cut by at least 10% and up to 50% for the next step. See [13] for details.

Finally h is set to b’ = nh and |h| is restricted t0 Amin < |h| < hmax With the defaults i, = 0.0 and hpyx = 0.

Normally, IDAS takes steps until a user-defined output value ¢ = ¢, is overtaken, and then computes y(tou) by
interpolation. However, a “one step”” mode option is available, where control returns to the calling program after each
step. There are also options to force IDAS not to integrate past a given stopping point ¢ = #op.
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2.2.4 Inequality Constraints

IDAS permits the user to impose optional inequality constraints on individual components of the solution vector .
Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
nonlinear iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, IDAS estimates
anew step size h’ using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the calculation of
consistent initial conditions. If a step fails to satisfy the constraints repeatedly within a step attempt then the integration
is halted and an error is returned. In this case the user may need to employ other strategies as discussed in §5.1.4.2 to
satisfy the inequality constraints.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form JAy = —G (e.g., the default
Newton iteration), IDAS makes repeated use of a linear solver. If this linear system solve is done with one of the scaled
preconditioned iterative linear solvers supplied with SUNDIALS, these solvers are rarely successful if used without
preconditioning; it is generally necessary to precondition the system in order to obtain acceptable efficiency. A system
Ax = b can be preconditioned on the left, on the right, or on both sides. The Krylov method is then applied to a system
with the matrix P~1A, or AP~1, or Py 1APE ! instead of A. However, within IDAS, preconditioning is allowed only
on the left, so that the iterative method is applied to systems (P~!J)Ay = —P~'G. Left preconditioning is required
to make the norm of the linear residual in the nonlinear iteration meaningful; in general, || JAy + G|| is meaningless,
since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in some sense ap-
proximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix P should be reasonably
efficient to evaluate and solve. Finding a good point in this tradeoff between rapid convergence and low cost can be very
difficult. Good choices are often problem-dependent (for example, see [16] for an extensive study of preconditioners
for reaction-transport systems).

Typical preconditioners used with IDAS are based on approximations to the iteration matrix of the systems involved;
oF oF

in other words, P ~ " + a?, where « is a scalar inversely proportional to the integration step size h. Because the
Y Y

Krylov iteration occurs within a nonlinear solver iteration and further also within a time integration, and since each of

these iterations has its own test for convergence, the preconditioner may use a very crude approximation, as long as it

captures the dominant numerical feature(s) of the system. We have found that the combination of a preconditioner with

the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be surprisingly superior to

using the same matrix without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-

Krylov method with no preconditioning.

2.4 Rootfinding

The IDAS solver has been augmented to include a rootfinding feature. This means that, while integratnuming the Initial
Value Problem (2.1), IDAS can also find the roots of a set of user-defined functions g;(¢,y,y) that depend on ¢, the
solution vector y = y(t), and its t—derivative ¢(¢). The number of these root functions is arbitrary, and if more than
one g; is found to have a root in any given interval, the various root locations are found and reported in the order that
they occur on the ¢ axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of
gi(t,y(t),y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it
will probably be missed by IDAS. If such a root is desired, the user should reformulate the root function so that it
changes sign at the desired root.
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The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [37]. In addition, each time g is computed,
IDAS checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is found
at a point ¢, IDAS computes g at ¢ 4§ for a small increment 9, slightly further in the direction of integration, and if any
gi(t + &) = 0 also, IDAS stops and reports an error. This way, each time IDAS takes a time step, it is guaranteed that
the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, IDAS has an
interval (¢;,, tp;] in which roots of the g;(¢) are to be sought, such that ¢; is further ahead in the direction of integration,
and all g;(¢;,) # 0. The endpoint ¢y; is either t,,, the end of the time step last taken, or the next requested output time
tout if this comes sooner. The endpoint ¢, is either ¢,,_1, or the last output time t,,, (if this occurred within the last
step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,, if an exact
zero was found. The algorithm checks g at ¢,,; for zeros and for sign changes in (¢;,, t5;). If no sign changes are found,
then either a root is reported (if some g;(t;) = 0) or we proceed to the next time interval (starting at t5,;). If one or
more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given by

7=100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (¢tn:)|/|9i(tni) — gi(ti0)], corresponding to the closest to ¢;, of the secant method
values. At each pass through the loop, a new value t,,;4 is set, strictly within the search interval, and the values of
9i(tmiaq) are checked. Then either ¢;, or ty; is reset to ¢,,;4 according to which subinterval is found to have the sign
change. If there is none in (¢;,, t,niq) but some g;(tm:q) = 0, then that root is reported. The loop continues until
|thi — tio| < 7, and then the reported root location is ¢p,;.

In the loop to locate the root of g;(t), the formula for ¢,,,;4 is

tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where o a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,;4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward ¢;, vs toward t;;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides were
the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,,,4 is closer to ¢;, when o < 1
and closer to ¢,; when @ > 1. If the above value of ¢,,;4 is within 7/2 of ¢, or ¢, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (0.5 being the midpoint), and
the actual distance from the endpoint is at least 7/2.

2.5 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity analysis run
§2.7 it is of interest to compute integral quantities of the form

t

z(t) = / q(r,y(1),9(7),p)dr. (2.10)
to

The most effective approach to compute z(t) is to extend the original problem with the additional ODEs (obtained by

applying Leibnitz’s differentiation rule):

qu(t7y,y,p), z(to):()
Note that this is equivalent to using a quadrature method based on the underlying linear multistep polynomial repre-
sentation for y(t).

This can be done at the “user level” by simply exposing to IDAS the extended DAE system (2.2) + (2.10). However, in
the context of an implicit integration solver, this approach is not desirable since the nonlinear solver module will require
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the Jacobian (or Jacobian-vector product) of this extended DAE. Moreover, since the additional states, z, do not enter
the right-hand side of the ODE (2.10) and therefore the residual of the extended DAE system does not depend on z, it
is much more efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking out”
the additional states z from the nonlinear system (2.4) that must be solved in the correction step of the LMM. Instead,
“corrected” values z,, are computed explicitly as

q
(hf’nq(tn: Yn, ynap) - Z aTL,iZ7L—i> )
i=1

Zn =
O,

once the new approximation y,, is available.

The quadrature variables z can be optionally included in the error test, in which case corresponding relative and absolute
tolerances must be provided.

2.6 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters, through the right-
hand side vector and/or through the vector of initial conditions, as in (2.2). In addition to numerically solving the DAEs,
it may be desirable to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior of the simulation
or to evaluate optimization gradients (in the setting of dynamic optimization, parameter estimation, optimal control,
etc.).

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) = dy(t)/0p; and satisfies
the following forward sensitivity equations (or sensitivity equations for short):

OF  OF .  OF

— S+ =35 =0

dy o] Opi . @.11)
Oyo(p) . 990(p)

si(to) = op; 3i(to) = o

obtained by applying the chain rule of differentiation to the original DAEs (2.2).

When performing forward sensitivity analysis, IDAS carries out the time integration of the combined system, (2.2)
and (2.11), by viewing it as a DAE system of size N (N, + 1), where N is the number of model parameters p;, with
respect to which sensitivities are desired (Vg < NN,). However, major improvements in efficiency can be made by
taking advantage of the special form of the sensitivity equations as linearizations of the original DAEs. In particular,
the original DAE system and all sensitivity systems share the same Jacobian matrix J in (2.7).

The sensitivity equations are solved with the same linear multistep formula that was selected for the original DAEs and
the same linear solver is used in the correction phase for both state and sensitivity variables. In addition, IDAS offers
the option of including (full error control) or excluding (partial error control) the sensitivity variables from the local
error test.

2.6.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the combined DAE and
sensitivity system for the vector § = [y, 51, ..., Sn,].

e Staggered Direct In this approach [24], the nonlinear system (2.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving (2.11) after the BDF
discretization is used to eliminate $;. Although the system matrix of the above linear system is based on exactly
the same information as the matrix J in (2.7), it must be updated and factored at every step of the integration, in
contrast to an evaluation of J which is updated only occasionally. For problems with many parameters (relative
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to the problem size), the staggered direct method can outperform the methods described below [47]. However,
the computational cost associated with matrix updates and factorizations makes this method unattractive for
problems with many more states than parameters (such as those arising from semidiscretization of PDEs) and is
therefore not implemented in IDAS.

* Simultaneous Corrector In this method [52], the discretization is applied simultaneously to both the original
equations (2.2) and the sensitivity systems (2.11) resulting in an “extended” nonlinear system G () = 0 where
Un = [Yn,- -, Si,...]. This combined nonlinear system can be solved using a modified Newton method as in
(2.6) by solving the corrector equation

J@n(m-{-l) - Qn(mﬂ = 7G(gn(m)) (2.12)
at each iteration, where
J
J J
J=|J 0 J 7
Jy. O ... 0 J

J is defined as in (2.7), and J; = (0/0y) [Fyysi + Fy$; + F),]. It can be shown that 2-step quadratic convergence
can be retained by using only the block-diagonal portion of J in the corrector equation (2.12). This results in a
decoupling that allows the reuse of J without additional matrix factorizations. However, the sum Fys; + Fy3; +
F},, must still be reevaluated at each step of the iterative process (2.12) to update the sensitivity portions of the
residual G.

e Staggered corrector In this approach [33], as in the staggered direct method, the nonlinear system (2.4) is solved
first using the Newton iteration (2.6). Then, for each sensitivity vector £ = s;, a separate Newton iteration is
used to solve the sensitivity system (2.11):

J[gn(mﬁLl) - fn(m)] =
. . 1 ! . (2.13)
- Fy (tnv Yn, yn)gn(m) + Fz} (tn7 Yn, yn) . hn O‘n,Ogn(m) + Z an,ign—i + F i (tnv Yn, yn) .

i=1

In other words, a modified Newton iteration is used to solve a linear system. In this approach, the matrices
OF /0y, OF /0y and vectors O f /Jp; need be updated only once per integration step, after the state correction
phase (2.6) has converged.

IDAS implements both the simultaneous corrector method and the staggered corrector method.

An important observation is that the staggered corrector method, combined with a Krylov linear solver, effectively
results in a staggered direct method. Indeed, the Krylov solver requires only the action of the matrix J on a vector,
and this can be provided with the current Jacobian information. Therefore, the modified Newton procedure (2.13) will
theoretically converge after one iteration.

2.6.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, IDAS provides an automated estimation of absolute tolerances for
the sensitivity variables based on the absolute tolerance for the corresponding state variable. The relative tolerance
for sensitivity variables is set to be the same as for the state variables. The selection of absolute tolerances for the
sensitivity variables is based on the observation that the sensitivity vector s; will have units of [y]/[p;]. With this, the
absolute tolerance for the j-th component of the sensitivity vector s; is set to atol;/|p;|, where atol; are the absolute
tolerances for the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute tolerances is
equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector s; with weights based on s;
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be the same as the weighted root-mean-square norm of the vector of scaled sensitivities §; = |p;|s; with weights based
on the state variables (the scaled sensitivities 5; being dimensionally consistent with the state variables). However, this
choice of tolerances for the s; may be a poor one, and the user of IDAS can provide different values as an option.

2.6.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.11): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or directional derivatives). IDAS pro-
vides all the software hooks for implementing interfaces to automatic differentiation (AD) or complex-step approxi-
mation; future versions will include a generic interface to AD-generated functions. At the present time, besides the
option for analytical sensitivity right-hand sides (user-provided), IDAS can evaluate these quantities using various fi-
nite difference-based approximations to evaluate the terms (0F/0y)s; + (0OF/0y)s; and (O f /Op;), or using directional
derivatives to evaluate [(OF/0y)s; + (0F/0y)$; + (0f/dp:)]. As is typical for finite differences, the proper choice
of perturbations is a delicate matter. IDAS takes into account several problem-related features: the relative DAE er-
ror tolerance rtol, the machine unit roundoft U, the scale factor p;, and the weighted root-mean-square norm of the
sensitivity vector s;.

Using central finite differences as an example, the two terms (OF/0y)s; + (0F/0y)s; and Of /Op; in (2.11) can be
evaluated either separately:

OF OF . F(t,y+oysi,y+0ysi,p) — F(t,y —0ys:,9 — 048, p)

oF L OF o , 2.14
8ys * ayps 20, @19
aF ~ F(t7y7y7p + Jiei) B F(t? Y,Y,p — Uiei) , (215)
8pi 20’i
il /ma(riol, 0) 1
o; = |pi|v/max(rtol,U), o, = —
! max(1/a, [|sillwrms/17i])
or simultaneously:
87FSZ_ n ajpéi n OF - F(t,y+o0s;,y+0$,p+oe)—F(t,y—o0s;,y — 08, p—0e;) ’ (2.16)
Ay Ay Ip; 20

o =min(o;, 0y),

or by adaptively switching between (2.14) + (2.15) and (2.16), depending on the relative size of the two finite difference
increments o; and o,,. In the adaptive scheme, if p = max(o;/0,,0,/0;), we use separate evaluations if p > pyaqz
(an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o3, 0, o) and switching between derivative formulas have also been
implemented for one-sided difference formulas. Forward finite differences can be applied to (0F/dy)s; + (OF/0y)s;
and OF /Op; separately, or the single directional derivative formula

oF oF . OF  F(t,y+os;,y+0s;,p+oe)—F(t,y,y,p)
S8 T 5 Psit+ ~
dy dy Opi o

can be used. In IDAS, the default value of p,,,,, = 0 indicates the use of the second-order centered directional derivative
formula (2.16) exclusively. Otherwise, the magnitude of p,,4, and its sign (positive or negative) indicates whether this
switching is done with regard to (centered or forward) finite differences, respectively.
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2.6.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.5), IDAS does not carry their sensitivities
automatically. Instead, we provide a more general feature through which integrals depending on both the states y of
(2.2) and the state sensitivities s; of (2.11) can be evaluated. In other words, IDAS provides support for computing
integrals of the form:

5(t) = / 4 y(7), 5517, ... 5, (7). p) T

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed by using:
QlZQU81+qul+qu7 izla"'aNp7

as integrands for z, where ¢y, q;, and g, are the partial derivatives of the integrand function g of (2.10).

As with the quadrature variables z, the new variables Z are also excluded from any nonlinear solver phase and “cor-
rected” values Zz,, are obtained through explicit formulas.

2.7 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with respect to N, param-
eters is roughly equivalent to solving an DAE system of size (1 + Ns)N. This can become prohibitively expensive,
especially for large-scale problems, if sensitivities with respect to many parameters are desired. In this situation, the
adjoint sensitivity method is a very attractive alternative, provided that we do not need the solution sensitivities s;, but
rather the gradients with respect to model parameters of a relatively few derived functionals of the solution. In other
words, if y(¢) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

T
G(p) = / g(t,y,p)dt, (2.17)
to

or, alternatively, the gradient dg/dp of the function g(t,y, p) at the final time ¢ = T'. The function g must be smooth
enough that 9g/dy and dg/dp exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and ¢. For details on the derivation
see [23].

2.7.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange multiplier A, we
form the augmented objective function

T
1(p) = G(p) - / NF(t,y,§,p)dt.

Since F'(t,y,y,p) = 0, the sensitivity of G with respect to p is

G dI

T T
G _dl gy dt—/ N (Fy + Fyyp + Fygp)dt, (2.18)
B =iy =) ot [ X Fy s Fy)

where subscripts on functions such as F' or g are used to denote partial derivatives. By integration by parts, we have

T T
* . * T *
/ AN Fyypdt = (A Fyyp)|t0 */t (A Fy)lypdt»
0

to
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where (- - - )’ denotes the t—derivative. Thus equation (2.18) becomes

dG

T T
* * * * T
Tp_/ (gp_)‘Fp)dt_/ [_gy+)‘Fy_()‘ Fy)/]ypdt_()‘ Fz}yp)‘to-

to to

Now by requiring A to satisfy
(N Fy) — XN'Fy = —g,, (2.19)

we obtain

e

T
* * T
- / (g9 — N Eyp) dt — (N Eyy)[1. (2.20)

to

Note that y,, at t = ¢ is the sensitivity of the initial conditions with respect to p, which is easily obtained. To find the
initial conditions (at t = T') for the adjoint system, we must take into consideration the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

NFyl,_, =0, (2.21)
yielding the sensitivity equation for dG /dp
ac (" . .
- /to (g9 — N"Ey) dt + (A Fyyp)|_, - (2.22)

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final conditions in such
cases, see [23].

The first thing to notice about the adjoint system (2.19) is that there is no explicit specification of the parameters p; this
implies that, once the solution A is found, the formula (2.20) can then be used to find the gradient of G with respect
to any of the parameters p. The second important remark is that the adjoint system (2.19) is a terminal value problem
which depends on the solution y(t) of the original IVP (2.2). Therefore, a procedure is needed for providing the states
y obtained during a forward integration phase of (2.2) to IDAS during the backward integration phase of (2.19). The
approach adopted in IDAS, based on checkpointing, is described in §2.7.3 below.

2.7.2 Sensitivity of g(T', p)

Now let us consider the computation of dg/dp(T"). From dg/dp(T") = (d/dT)(dG/dp) and equation (2.20), we have

dg T d(\* Fyy,)
99 _ (g — 3BT —/ NeFydt+ (Ve Fyy,)|  — S Ein) (2.23)
dp : oo IS dr
where A denotes OA/OT. For index-0 and index-1 DAEs, we obtain
AN Fyyp) |,y _ 0
dr ’
while for a Hessenberg index-2 DAE system we have
d()‘*Fyyp)|t:T _ d(gy“ (CB)_lf;?)
dT B dt '
t=T
The corresponding adjoint equations are
(N Fy) — NpFy = 0. (2.24)
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For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary condition for this
equation we write A as A(¢,T) because it depends on both ¢ and T'. Then

\*(T,T)F,

Taking the total derivative, we obtain

(A + Ar)" (T, T)F,

Since A; is just A, we have the boundary condition

Mo Fy)|,—p = — [)\ (T, T)d—t-” + A Fy}

t=T

For the index-one DAE case, the above relation and (2.19) yield

(A*TFy) = [gy - )‘*Fy]

t=T

t=T

For the regular implicit ODE case, F} is invertible; thus we have \(T, ) = 0, which leads to A (T') = —A\(T). As
with the final conditions for A\(T') in (2.19), the above selection for Ar(T) is not sufficient for index-two Hessenberg
DAE:s (see [23] for details).

2.7.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires, at the current
time, the states y which were computed during the forward integration phase. Since IDAS implements variable-step
integration formulas, it is unlikely that the states will be available at the desired time and so some form of interpolation
is needed. The IDAS implementation being also variable-order, it is possible that during the forward integration phase
the order may be reduced as low as first order, which means that there may be points in time where only y and 3 are
available. These requirements therefore limit the choices for possible interpolation schemes. IDAS implements two
interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial interpolation method
which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size of the vectors y and
y that would need to be stored make this approach computationally intractable. Thus, IDAS settles for a compromise
between storage space and execution time by implementing a so-called checkpointing scheme. At the cost of at most
one additional forward integration, this approach offers the best possible estimate of memory requirements for adjoint
sensitivity analysis. To begin with, based on the problem size N and the available memory, the user decides on the
number Ny of data pairs (y, y) if cubic Hermite interpolation is selected, or on the number Ny of y vectors in the
case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, after every IV, integration steps a checkpoint is formed by saving enough
information (either in memory or on disk) to allow for a hot restart, that is a restart which will exactly reproduce the
forward integration. In order to avoid storing Jacobian-related data at each checkpoint, a reevaluation of the iteration
matrix is forced before each checkpoint. At the end of this stage, we are left with V. checkpoints, including one at
tp. During the backward integration stage, the adjoint variables are integrated backwards from 7T to ¢y, going from
one checkpoint to the previous one. The backward integration from checkpoint ¢ + 1 to checkpoint ¢ is preceded by
a forward integration from ¢ to ¢ + 1 during which the Ny vectors y (and, if necessary ¥) are generated and stored in
memory for interpolation.

Note: The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation
at the first point to the right of the time at which the interpolated value is sought (unless too close to the ¢-th checkpoint,
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in which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.2), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT). The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate.

9\
Forward pass

Fig. 2.1: Tllustration of the checkpointing algorithm for generation of the forward solution during the integration of the
adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward integration phase to uncertainty
in the final number of checkpoints. However, N, is much smaller than the number of steps taken during the forward
integration, and there is no major penalty for writing/reading the checkpoint data to/from a temporary file. Note that,
at the end of the first forward integration stage, interpolation data are available from the last checkpoint to the end of
the interval of integration. If no checkpoints are necessary (Vg is larger than the number of integration steps taken
in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as one forward plus one
backward integration. In addition, IDAS provides the capability of reusing a set of checkpoints for multiple backward
integrations, thus allowing for efficient computation of gradients of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in IDAS provides the necessary infrastructure to integrate backwards
in time any DAE terminal value problem dependent on the solution of the IVP (2.2), including adjoint systems (2.19)
or (2.24), as well as any other quadrature ODEs that may be needed in evaluating the integrals in (2.20). In particular,
for DAE systems arising from semi-discretization of time-dependent PDEs, this feature allows for integration of either
the discretized adjoint PDE system or the adjoint of the discretized PDE.

2.8 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute second-order deriva-
tive information. Considering the DAE problem (2.2) and some model output functional g(y), the Hessian d%g/dp?
can be obtained in a forward sensitivity analysis setting as

d?g T
dp? ~ (9y ® IN,) Ypp + Yp Jyu¥p »
where ® is the Kronecker product. The second-order sensitivities are solution of the matrix DAE system:

(Fy@INp) 'yper (Fy@INy) 'yper(IN@yg) '(Fyyyp+Fyyyp)+ (IN@yg)'(Fyyyp+Fyyyp) =0
*yo . %o
Ypp(to) = o2 Ypp(to) = op2
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where y,, denotes the first-order sensitivity matrix, the solution of N, systems (2.11), and y,,, is a third-order tensor.
It is easy to see that, except for situations in which the number of parameters N, is very small, the computational cost
of this so-called forward-over-forward approach is exorbitant as it requires the solution of N, + Ng additional DAE
systems of the same dimension as (2.2).

Note: For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters
p. Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is
through its initial conditions only. For details on the derivation in the general case, see [53].

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-over-adjoint ap-
proach. This method is based on using the same “trick” as the one used in computing gradients of pointwise func-
tionals with the adjoint method, namely applying a formal directional forward derivation to the gradient of (2.20) (or
the equivalent one for a pointwise functional ¢(T, y(7T))). With that, the cost of computing a full Hessian is roughly
equivalent to the cost of computing the gradient with forward sensitivity analysis. However, Hessian-vector products
can be cheaply computed with one additional adjoint solve.

As an illustration, consider the ODE problem (the derivation for the general DAE case is too involved for the purposes
of this discussion)

y=f(t1y), ylto)=uy(p),

depending on some parameters p through the initial conditions only and consider the model functional output G(p) =
f ttof g(t,y) dt. It can be shown that the product between the Hessian of G (with respect to the parameters p) and some
vector u can be computed as

T T
u=[(\N ®In,) yppu+ypu}t=to ,
where A and p are solutions of

— = fyut (AT @L) fyys; plty) =0
—A= LA+ gy Alty) =0
5= fys; s(to) = yopu.

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,. The forward-
over-adjoint approach hinges crucially on the fact that s can be computed at the cost of a forward sensitivity analysis
with respect to a single parameter (the last ODE problem above) which is possible due to the linearity of the forward
sensitivity equations (2.11).

Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector product is roughly that
of two forward and two backward integrations of a system of DAEs of size /N. For more details, including the corre-
sponding formulas for a pointwise model functional output, see the work by Ozyurt and Barton [53] who discuss this
problem for ODE initial value problems. As far as we know, there is no published equivalent work on DAE problems.
However, the derivations given in [53] for ODE problems can be extended to DAEs with some careful consideration
given to the derivation of proper final conditions on the adjoint systems, following the ideas presented in [23].

To allow the foward-over-adjoint approach described above, IDAS provides support for:
* the integration of multiple backward problems depending on the same underlying forward problem (2.2), and

* the integration of backward problems and computation of backward quadratures depending on both the states y
and forward sensitivities (for this particular application, s) of the original problem (2.2).
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Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 IDAS organization

The IDAS package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

The overall organization of the IDAS package is shown in Fig. 3.3. IDAS utilizes generic linear and nonlinear solvers
defined by the SUNLinearSolver (see §8) and SUNNonlinearSolver interfaces (see §9) respectively. As such, IDAS
has no knowledge of the method being used to solve the linear and nonlinear systems that arise. For any given user
problem, there exists a single nonlinear solver interface and, if necessary, one of the linear system solver interfaces is
specified, and invoked as needed during the integration.

IDAS has a single unified linear solver interface, IDALS, supporting both direct and iterative linear solvers built using
the generic SUNLinearSolver interface (see §8). These solvers may utilize a SUNMatrix object (see §7) for storing

41



User Documentation for IDAS, v5.5.1
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Fig. 3.1: High-level diagram of the SUNDIALS suite.
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Fig. 3.2: Directory structure of the SUNDIALS source tree.

SUNDIALS
[ IDAS H IDAADJOINT ]

| }

IDALS IDANLS
Linear Solver Interface Nonlinear Solver Interface

Vector | | Matrix | Linear Solver | | Nonlinear Solver

A 4

Preconditioner Modules

IDABBDPRE

Fig. 3.3: Overall structure diagram of the IDAS package. Components specific to IDAS begin with “IDA” (IDALS,
IDANLS, and IDABBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and solver interfaces.
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Jacobian information, or they may be matrix-free. Since IDAS can operate on any valid SUNLinearSolver, the set of
linear solver modules available to IDAS will expand as new SUNLinearSolver implementations are developed.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, IDAS includes algorithms for
their approximation through difference quotients, although the user also has the option of supplying a routine to compute
the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or user-
supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, IDAS includes an algorithm for the approximation by difference
quotients of the product Jv. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [16, 20], together with the example and demonstration programs included with IDAS, offer
considerable assistance in building preconditioners.

IDA’s linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization, (2)
setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution phases
are separate because the evaluation of Jacobians and preconditioners is done only periodically during the integration,
and only as required to achieve convergence. The call list within the central IDAS module to each of the four associated
functions is fixed, thus allowing the central module to be completely independent of the linear system method.

IDAS also provides a preconditioner module, for use with any of the Krylov iterative linear solvers. It works in conjunc-
tion with the NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each block
being a banded matrix.

All state information used by IDAS to solve a given problem is stored in N_Vector instances. There is no global data in
the IDAS package, and so, in this respect, it is reentrant. State information specific to the linear and nonlinear solver are
saved in the SUNLinearSolver and SUNNonlinearSolver instances respectively. The reentrancy of IDAS enables
the setting where two or more problems are solved by intermixed or parallel calls to different instances of the package
from within a single user program.
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Chapter 4

Using SUNDIALS

As discussed in §3, the all SUNDIALS packages are built upon a common set of interfaces for vectors, matrices, and
algebraic solvers. In addition, the packages all leverage some other common infrastructure discussed in this section.

4.1 Data Types

The header file sundials_types.h contains the definition of the types:
» realtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices
* booleantype — the type used for logic operations within SUNDIALS

* SUNOutputFormat — an enumerated type for SUNDIALS output formats

4.1.1 Floating point types

type realtype

The type realtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest value repre-
sentable as a realtype, SMALL_REAL to be the smallest value representable as a realtype, and UNIT_ROUNDOFF to
be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that needs the ability
to branch on the definition of realtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a 1long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to 1.0F
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if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro internally to
declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double, fabsf when
realtype is float, and fabsl when realtype is long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros is
precision-independent except for any calls to precision-specific library functions. Our example programs use real-
type, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double in their code
(assuming that this usage is consistent with the typedef for realtype) and call the appropriate math library functions
directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying the code to use
realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use the corresponding precision
(see §11.1.2).

4.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23* — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.1.2).

4.1.3 Boolean type

type booleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type booleantype
as an int.

The advantage of using the name booleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type booleantype are intended to have
only the two values SUNFALSE (0) and SUNTRUE (1).
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4.1.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

4.2 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

e ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);
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After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free (SUNContext *ctx)
Frees the SUNContext object.

Arguments:

* ctx — pointer to a valid SUNContext object, NULL upon successful return.

Returns:

e Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:
int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.
Arguments:
e ctx —a valid SUNContext object.

* profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:

* ctx —a valid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.
Returns:

e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
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e ctx —avalid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

* Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Itis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {
retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}

CVode(cvode_mem[i], ...);

(continues on next page)
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(continued from previous page)

// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);

// set optional cvode inputs...
CVode(cvode_mem, ...);
// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx) ;

}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(void* comm = nullptr)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

(continues on next page)
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/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;
Context& operator=(Context&&) = default;

SUNContext Convert() override
{

return “sunctx_.get();

}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
}
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.3 SUNDIALS Status Logging

New in version 6.2.0.

(continued from previous page)

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and

run-time options to ensure the best possible performance is achieved.

4.3. SUNDIALS Status Logging
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4.3.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPT is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §11.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).

4.3.2 Logger API

The central piece of the Logger API is the SUNLogger type:
typedef struct SUNLogger_ *SUNLogger

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().
The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.
enum SUNLogLevel

The SUNDIALS logging level
enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels
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enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (void *comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
¢ Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (void *comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.

¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)
Sets the filename for error output.

Arguments:

* logger —a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

4.3. SUNDIALS Status Logging
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int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger —a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)
Sets the filename for info output.

Arguments:

* logger — a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger —a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:
* logger —a SUNLogger object.
¢ 1vl — the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
* label - the message label.
e msg_txt — the message text itself.
e ... —the format string arguments
Returns:

e Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.
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int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

e 1v1 - the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger — a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

4.3.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp
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4.4 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [12] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.4.2).

4.4.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §11.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.

4.4.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e. an instance of the struct

typedef struct _SUNProfiler *SUNProfiler

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().
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The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(void *comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)

Ends the timing of a region indicated by the name.
Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
e fp — the file handler to print to
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Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)
Resets the region timings and counters to zero.

Arguments:
* p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.4.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

JE L

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

umax = N_VMaxNorm(u) ;

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u) ;
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.4.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.
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4.5 SUNDIALS Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
* len — allocated length of the version character array.
Return value:
* 0 if successful
» -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
e patch — SUNDIALS release patch version number.
* label — string to hold the SUNDIALS release label.
¢ len — allocated length of the label character array.
Return value:
* 0 if successful
-1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.6 SUNDIALS Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
 All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, and farkode_mristep_mod modules provide in-
terfaces to the ARKStep, ERKStep, and MRIStep integrators respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

¢ CVODE via the fcvode_mod module.
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CVODES via the fcvodes_mod module.
* IDA via the fida_mod module.

e IDAS via the fidas_mod module.

* KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fnvecpenmp_mod.<so|a>,
libsundials_nvecopenmp.<so|a>, libsundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APIL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.6.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.6.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation (§6, §7, §8, and §9 respectively). For details
on where the Fortran 2003 module (.mod) files and libraries are installed see §11.

The Fortran 2003 interface modules were generated with SWIG Fortran [45], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module

Fortran 2003 Module Name

ARKODE
ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP
CVODE

CVODES

IDA

IDAS

KINSOL

NVECTOR
NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL

farkode_mod
farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
fcvode_mod
fcvodes_mod

fida_mod

fidas_mod

fkinsol_mod
fsundials_nvector_mod
fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced

continues on next page
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Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX ONEMKLDENSE
SUNMATRIX_SPARSE
SUNLINSOL
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsundials_matrix_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod

Not interfaced

Not interfaced
fsunmatrix_sparse_mod
fsundials_linearsolver_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsundials_nonlinearsolver_mod
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.6.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double-precision the sunindextype size is 64-bits.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type
double in, inout, out, return real (c_double)
int in, inout, out, return integer(c_int)
long in, inout, out, return integer(c_long)
booleantype in, inout, out, return integer(c_int)
realtype in, inout, out, return real (c_double)

continues on next page
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Table 4.2 — continued from previous page

C Type Parameter Direction Fortran 2003 type

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)

double* return real (c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real (c_double), dimension(*)
realtype* return real (c_double), pointer, dimension(:)
sunindextype* in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
realtypel[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)

SUNLinearSolver return type(SUNLinearSolver), pointer

SUNNonlinearSolver in, inout, out
SUNNonlinearSolver return

FILE* in, inout, out, return
void* in, inout, out, return
TR in, inout, out, return
TEIEsS in, inout, out, return
TBEES in, inout, out, return

type (SUNNonlinearSolver)
type(SUNNonlinearSolver), pointer

type(c_ptr)
type(c_ptr)
type(c_ptr)
type(c_ptr)
type(c_ptr)

4.6.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.6.1 discusses

equivalencies of data types in the two languages.

4.6.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
X => FN_VNew_Serial (N, sunctx)
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Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.6.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
realtype® xdata;
long int leniw, lenrw;

/* create a new serial vector */
X = N_VNew_Serial (N, sunctx);

/% capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, Xx)

/% pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real (c_double), pointer :: xdataptr(:)

real (c_double) 11 xdata(N)
integer(c_long) :: leniw(1), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer (x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)
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4.6.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.6.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.6.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type(c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer r A
type(N_Vector), pointer it x, b

! Disassociate A
A = nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.

(continues on next page)
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(continued from previous page)

! Therefore, we cannot pass a c_null ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.6.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possi-
ble to directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages
with sensitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIn-
dexVectorArray () that can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, Xx);

/* Fill each array with ones */
for (int 1 = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, X)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0®)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray () (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.
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4.6.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_futils_mod.

FILE *SUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Arguments:

e filename - the full path to the file, that should have Fortran type character(kind=C_CHAR,
len=%*).

¢ mode — the I/O mode to use for the file. This should have the Fortran type character (kind=C_CHAR,
len=%). The string begins with one of the following characters:

r to open a text file for reading

r+ to open a text file for reading/writing

w to truncate a text file to zero length or create it for writing

w+ to open a text file for reading/writing or create it if it does not exist

a to open a text file for appending, see documentation of fopen for your system/compiler

a+ to open a text file for reading/appending, see documentation for fopen for your system/compiler
Return value:
¢ The function returns a type (C_PTR) which holds a C FILE*.

void SUNDIALSFileClose(fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Arguments:

e fp — the C FILE* that was previously obtained from fopen. This should have the Fortran type
type(c_ptr).

4.6.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran
18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.
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4.6.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer (yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v yarr(2)

! fill in the RHS function:

I [0 0]*[(-1+ur2-r(t))/(2*u)] + [ 0 ]
I [e -1] [(-2+vA2-s(t))/(2*V)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

! return success
ierr = 0
return

end function
The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: tinstead

of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.
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4.7 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs (see Chapters §6, §7, §8, and §9) or through user-supplied callback functions. Thus,
under the model, the overall structure of the user’s calling program, and the way users interact with the SUNDIALS
packages is similar to using SUNDIALS in CPU-only environments.

4.7.1 SUNDIALS GPU Programming Model

As described in [11], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANYVECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [4], AMD ROCm/HIP [1], and Intel oneAPI [2]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDI-
ALS operates on data through these APIs.

In addition, SUNDIALS provides a memory management helper module (see §10) to support applications which im-
plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X? X

68 Chapter 4. Using SUNDIALS



User Documentation for IDAS, v5.5.1

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE =~ X? X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR x! X! X! x! x!
SUNLINSOL_SPFGMR X! X! X! X! x!
SUNLINSOL_SPTFOMR X! X! X! X! X!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! x!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON X! x! X! X! X!
SUNNONLINSOL_FIXEDPOINT X! X! X! X! X!

Notes regarding the above tables:
1. This module inherits support from the NVECTOR module used
2. Support for ROCm/HIP and oneAPI are currently untested.
3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.
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4.7.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.
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Chapter 5

Using IDAS

5.1 Using IDAS for IVP Solution

This chapter is concerned with the use of IDAS for the integration of DAEs.

The following sections treat the header files and the layout of the user’s main program, and provide descriptions of the
IDAS user-callable functions and user-supplied functions. The sample programs described in the companion document
[44] may also be helpful. Those codes may be used as templates (with the removal of some lines used in testing) and
are included in the IDAS package.

IDAS uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in §12.

The user should be aware that not all SUNLinearSolver and SUNMatrix objects are compatible with all N_Vector
implementations. Details on compatibility are given in the documentation for each SUNMatrix (Chapter §7) and
SUNLinearSolver (Chapter §8) implementation. For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver objects.
Please check Chapters §7 and §8 to verify compatibility between these objects. In addition to that documentation,
we note that the IDABBDPRE preconditioner can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector object with SuperLU_MT unless it is the NVECTOR_OPENMP module, and SuperLU_MT is also
compiled with OpenMP.

5.1.1 Access to library and header files

At this point, it is assumed that the installation of IDAS, following the procedure described in §11, has been completed
successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by IDAS. The relevant library files are

<libdir>/libsundials_ida.<so|a>
<libdir>/libsundials_nvec*.<so|a>
<libdir>/libsundials_sunmat®.<so|a>
<libdir>/libsundials_sunlinsol*.<so|a>
<libdir>/libsundials_sunnonlinsol®*.<so|a>

where the file extension .so is typically for shared libraries and . a for static libraries. The relevant header files are
located in the subdirectories
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<incdir>/idas
<incdir>/sundials
<incdir>/nvector
<incdir>/sunmatrix
<incdir>/sunlinsol
<incdir>/sunnonlinsol

The directories 1ibdir and incdir are the install library and include directories, respectively. For a default installa-
tion, these are <instdir>/1ib or <instdir>/1ib64 and <instdir>/include, respectively, where instdir is the
directory where SUNDIALS was installed (see §11).

Warning: Note that an application cannot link to both the IDAS and IDA libraries because both contain user-
callable functions with the same names (to ensure that IDAS is backward compatible with IDA). Therefore, appli-
cations that contain both DAE problems and DAEs with sensitivity analysis, should use IDAS.

5.1.2 Header files

The calling program must include several header files so that various macros and data types can be used. The header
file that is always required is:

* idas/idas.h the main header file for IDAS, which defines the types and various constants, and includes function
prototypes. This includes the header file for IDALS, idas/idas_1s.h.

Note that idas.h includes sundials_types.h, which defines the types, realtype, sunindextype, and boolean-
type and the constants SUNFALSE and SUNTRUE.

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h
(see Chapter §6 for more information). This file in turn includes the header file sundials_nvector.h which defines
the abstract vector data type.

If using a non-default nonlinear solver object, or when interacting with a SUNNonlinearSolver object directly, the
calling program must also include a SUNNonlinearSolver implementation header file, of the form sunnonlinsol/
sunnonlinsol_*.h where * is the name of the nonlinear solver (see Chapter §9 for more information). This file in
turn includes the header file sundials_nonlinearsolver.h which defines the abstract nonlinear linear solver data

type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.4) (e.g., the default Newton itera-
tion), the calling program must also include a SUNLinearSolver implementation header file, of the from sunlinsol/
sunlinsol_*.h where * is the name of the linear solver (see Chapter §8 for more information). This file in turn
includes the header file sundials_linearsolver.h which defines the abstract linear solver data type.

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/
sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver. The matrix
header file provides access to the relevant matrix functions/macros and in turn includes the header file sundials_-
matrix.h which defines the abstract matrix data type.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example idasFood-
Web_kry_p (see [44]), preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_-
SPGMR linear solver is used, the header sundials/sundials_dense.his included for access to the underlying generic
dense matrix arithmetic routines.
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5.1.3 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE IVP. Most of
the steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implemen-
tations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the specific name of the function to be
called or macro to be referenced.

1. Initialize parallel or multi-threaded environment (if appropriate)
For example, call MPI_Init to initialize MPI if used.

2. Create the SUNDIALS context object
Call SUNContext_Create() to allocate the SUNContext object.

3. Create the vector of initial values

Construct an N_Vector of initial values using the appropriate functions defined by the particular N_Vector
implementation (see §6 for details).

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y0). Here, *** is the name of the vector implementation.

For hypre, PETSc, and Trilinos vector wrappers, first create and initialize the underlying vector, and then create
an N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a hypre, PETSc, or
Trilinos vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for
these vector wrappers.

Set the vector yp0 of initial conditions for y similarly.
4. Create matrix object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver) and the linear solver will be a matrix-
based linear solver, then a template Jacobian matrix must be created by calling the appropriate constructor defined
by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where *** is the name of the matrix (see §7 for details).

5. Create linear solver object (if appropriate)

If alinear solver is required (e.g., when using the default Newton solver), then the desired linear solver object must
be created by calling the appropriate constructor defined by the particular SUNLinearSolver implementation.

For any of the native SUNDIALS SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_*#**(...); where *** is the name of the linear
solver (see §8 for details).

6. Create nonlinear solver object (if appropriate)

If using a non-default nonlinear solver, then the desired nonlinear solver object must be created by calling the
appropriate constructor defined by the particular SUNNonlinearSolver implementation.

For any of the native SUNDIALS SUNNonLinearSolver implementations, the nonlinear solver object may be
created using a call of the form SUNNonlinearSolver NLS = SUNNonlinSol_#***(...); where *** is the
name of the nonlinear solver (see §9 for details).

7. Create IDAS object
Call IDACreate() to create the IDAS solver object.
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8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Initialize IDAS solver

Call IDAInit () to provide the initial condition vectors created above, set the DAE residual function, and ini-
tialize IDAS.

Specify integration tolerances
Call one of the following functions to set the integration tolerances:
* IDASStolerances() to specify scalar relative and absolute tolerances.
* IDASVtolerances () to specify a scalar relative tolerance and a vector of absolute tolerances.

» IDAWFtolerances () to specify a function which sets directly the weights used in evaluating WRMS vector
norms.

See §5.1.4.3 for general advice on selecting tolerances and §5.1.4.4 for advice on controlling unphysical values.
Attach the linear solver (if appropriate)

If a linear solver was created above, initialize the IDALS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with IDASetLinearSolver().

Set linear solver optional inputs (if appropriate)
See Table 5.2 for IDALS optional inputs and Chapter §8 for linear solver specific optional inputs.
Attach nonlinear solver module (if appropriate)

If a nonlinear solver was created above, initialize the IDANLS nonlinear solver interface by attaching the non-
linear solver object with TDASetNonlinearSolver().

Set nonlinear solver optional inputs (if appropriate)

See Table 5.3 for IDANLS optional inputs and Chapter §9 for nonlinear solver specific optional inputs. Note,
solver specific optional inputs must be called after IDASetNonlinearSolver (), otherwise the optional inputs
will be overridden by IDAS defaults.

Specify rootfinding problem (optional)

Call IDARootInit () to initialize a rootfinding problem to be solved during the integration of the ODE system.
See Table 5.6 for relevant optional input calls.

Set optional inputs

Call IDASet*** functions to change any optional inputs that control the behavior of IDAS from their default
values. See §5.1.4.10 for details.

Correct initial values (optional)

Call IDACalcIC() to correct the initial values y® and yp® passed to IDAInit (). See Table 5.4 for relevant
optional input calls.

Advance solution in time

For each point at which output is desired, call ier = IDASolve(ida_mem, tout, &tret, yret, ypret,
itask). Here itask specifies the return mode. The vector yret (which can be the same as the vector y® above)
will contain y(t), while the vector ypret (which can be the same as the vector yp® above) will contain ¢(¢).

See IDASolve () for details.
Get optional outputs

Call IDAGet*** functions to obtain optional output. See §5.1.4.12 for details.
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19. Destroy objects

Upon completion of the integration call the following functions, as necessary, to destroy any objects created
above:

e Call N_VDestroy() to free vector objects.

Call SUNMatDestroy () to free matrix objects.

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

Call IDAFree() to free the memory allocated by IDAS.

Call SUNContext_Free() to free the SUNDIALS context.
20. Finalize MPL, if used
Call MPI_Finalize to terminate MPI.

5.1.4 User-callable functions

This section describes the IDAS functions that are called by the user to setup and then solve an IVP. Some of these are
required. However, starting with §5.1.4.10, the functions listed involve optional inputs/outputs or restarting, and those
paragraphs may be skipped for a casual use of IDAS. In any case, refer to §5.1.3 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.1.4.10).

5.1.4.1 IDAS initialization and deallocation functions

void *IDACreate (SUNContext sunctx)
The function IDACreate () instantiates an IDAS solver object.

Arguments:
e sunctx —the SUNContext object (see §4.2)
Return value:
* void* pointer the IDAS solver object.
int IDAInit (void *ida_mem, IDAResFn res, realtype t0, N_Vector y0, N_Vector yp0)

The function IDAInit () provides required problem and solution specifications, allocates internal memory, and
initializes IDAS.

Arguments:
* ida_mem — pointer to the IDAS solver object.

* res — is the function which computes the residual function F'(¢, y, ) for the DAE. For full details see
IDAResFn.

e t0 — is the initial value of ¢.
* y0 —is the initial value of y.
¢ ypO — is the initial value of 7.

Return value:
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IDA_SUCCESS — The call was successful.

IDA_MEM_NULL — The ida_mem argument was NULL.

IDA_MEM_FAIL — A memory allocation request has failed.

IDA_ILL_INPUT — An input argument to IDAInit () has an illegal value.

Notes:
If an error occurred, IDAInit () also sends an error message to the error handler function.

void IDAFree (void **ida_mem)
The function IDAFree () frees the pointer allocated by a previous call to IDACreate ().
Arguments:
* ida_mem — pointer to the IDAS solver object.
Return value:

e void

5.1.4.2 IDAS tolerance specification functions
One of the following three functions must be called to specify the integration tolerances (or directly specify the weights
used in evaluating WRMS vector norms). Note that this call must be made after the call to IDAInit ().

int IDASStolerances (void *ida_mem, realtype reltol, realtype abstol)

The function IDASStolerances () specifies scalar relative and absolute tolerances.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* reltol —is the scalar relative error tolerance.
* abstol —is the scalar absolute error tolerance.
Return value:
* IDA_SUCCESS — The call was successful.
e IDA_MEM_NULL — The ida_mem argument was NULL.
e IDA_NO_MALLOC — The allocation function IDAInit () has not been called.
e IDA_ILL_INPUT - One of the input tolerances was negative.
int IDASVtolerances (void *ida_mem, realtype reltol, N_Vector abstol)
The function IDASVtolerances () specifies scalar relative tolerance and vector absolute tolerances.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* reltol —is the scalar relative error tolerance.
* abstol —is the vector of absolute error tolerances.
Return value:
e IDA_SUCCESS — The call was successful.
e IDA_MEM_NULL — The ida_mem argument was NULL.

e IDA_NO_MALLOC — The allocation function IDAInit () has not been called.
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e IDA_ILL_INPUT - The relative error tolerance was negative or the absolute tolerance vector had a
negative component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

int IDAWFtolerances (void *ida_mem, IDAEwtFn efun)

The function IDAWFtolerances() specifies a user-supplied function efun that sets the multiplicative error
weights W, for use in the weighted RMS norm, which are normally defined by (2.5).

Arguments:

* ida_mem — pointer to the IDAS solver object. IDACreate ()

* efun - is the function which defines the ewt vector. For full details see IDAEwtFn.
Return value:

* IDA_SUCCESS — The call was successful.

e IDA_MEM_NULL — The ida_mem argument was NULL.

e IDA_NO_MALLOC — The allocation function IDAInit () has not been called.

5.1.4.3 General advice on choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So reltol of 10~% means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10719).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y[i] starts at some nonzero value, but in time decays to zero, then pure relative error control on y[i] makes
no sense (and is overly costly) after y[i] is below some noise level. Then abstol (if a scalar) or abstol[i] (if
a vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. See the example idaRoberts_dns in the IDAS package, and the discussion of it in the
IDAS Examples document [44]. In that problem, the three components vary betwen 0 and 1, and have different
noise levels; hence the abstol vector. It is impossible to give any general advice on abstol values, because the
appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

3. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual time step. The final (global) errors are some sort of accumulation of those per-step errors. A
good rule of thumb is to reduce the tolerances by a factor of .01 from the actual desired limits on errors. So if you
want .01% accuracy (globally), a good choice is to is a reltol of 10~°. But in any case, it is a good idea to do
a few experiments with the tolerances to see how the computed solution values vary as tolerances are reduced.
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5.1.4.4 Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (hence unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are relevant.

1. The way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again this
requires some knowledge of the noise level of these components, which may or may not be different for different
components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in yret returned by IDAS, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s residual function res should never change a negative value in the solution vector yy to a non-negative
value, as a “solution” to this problem. This can cause instability. If the res routine cannot tolerate a zero or
negative value (e.g., because there is a square root or log of it), then the offending value should be changed to
zero or a tiny positive number in a temporary variable (not in the input yy vector) for the purposes of computing
F(t,y,9)-

4. IDAS provides the option of enforcing positivity or non-negativity on components. Also, such constraints can be
enforced by use of the recoverable error return feature in the user-supplied residual function. However, because
these options involve some extra overhead cost, they should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

5.1.4.5 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.6), e.g., the default
Newton solver, then the solution of these linear systems is handled with the IDALS linear solver interface. This interface

supports all valid SUNLinearSolver objects. Here, a matrix-based SUNLinearSolver utilizes SUNMatrix objects

oF OF
to store the Jacobian matrix J = " + a? and factorizations used throughout the solution process. Conversely,
Y Y

matrix-free SUNLinearSolver object instead use iterative methods to solve the linear systems of equations, and only
require the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only, on both the left and
the right, or not at all. The exceptions to this rule are SPFGMR that supports right preconditioning only and PCG that
performs symmetric preconditioning. However, in IDAS only left preconditioning is supported. For the specification
of a preconditioner, see the iterative linear solver sections in §5.1.4.10 and §5.1.5. A preconditioner matrix P must
approximate the Jacobian .J, at least crudely.

To attach a generic linear solver to IDAS, after the call to IDACreate () but before any calls to IDASolve (), the user’s
program must create the appropriate SUNLinearSolver object and call the function IDASetLinearSolver(). To
create the SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinearSolver construc-
tors via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

Alternately, a user-supplied SUNLinearSolver object may be created and used instead. The use of each of the generic
linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed in the user
code. These are available in the corresponding header file associated with the specific SUNMatrix or SUNLinear-
Solver object in question, as described in Chapters §7 and §8.

Once this solver object has been constructed, the user should attach it to IDAS via a call to IDASetLinearSolver().
The first argument passed to this function is the IDAS memory pointer returned by IDACreate (); the second argument
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is the desired SUNLinearSolver object to use for solving systems. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the IDALS linear solver interface, linking it to the main IDAS integrator,
and allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int IDASetLinearSolver (void *ida_mem, SUNLinearSolver LS, SUNMatrix I)

The function IDASetLinearSolver() attaches a SUNLinearSolver object LS and corresponding template
Jacobian SUNMatrix object J (if applicable) to IDAS, initializing the IDALS linear solver interface.

Arguments:

* ida_mem — pointer to the IDAS solver object.

* LS — SUNLinearSolver object to use for solving linear systems of the form (2.6).

e J — SUNMatrix object for used as a template for the Jacobian or NULL if not applicable.
Return value:

* IDALS_SUCCESS — The IDALS initialization was successful.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

e IDALS_ILL_INPUT — The IDALS interface is not compatible with the LS or J input objects or is
incompatible with the N_Vector object passed to IDAInit ().

* IDALS_SUNLS_FAIL — A call to the LS object failed.
e IDALS_MEM_FAIL — A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g., for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMatrix in Chapter §7 for further information).

Warning: The previous routines IDAD1sSetLinearSolver () and IDASpilsSetLinearSolver() are
now wrappers for this routine, and may still be used for backward-compatibility. However, these will be
deprecated in future releases, so we recommend that users transition to the new routine name soon.

5.1.4.6 Nonlinear solver interface function

By default IDAS uses the SUNNonlinearSolver implementation of Newton’s method (see §9.3). To attach a different
nonlinear solver in IDAS, the user’s program must create a SUNNonlinearSolver object by calling the appropriate
constructor routine. The user must then attach the SUNNonlinearSolver object to IDAS by calling IDASetNonlin-
earSolver().

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver () must be called after IDAInit (). If any
calls to IDASolve () have been made, then IDAS will need to be reinitialized by calling ITDAReInit () to ensure that
the nonlinear solver is initialized correctly before any subsequent calls to IDASoIve().

The first argument passed to IDASetNonlinearSolver () is the IDAS memory pointer returned by IDACreate () and
the second argument is the SUNNonlinearSolver object to use for solving the nonlinear system (2.4). A call to this
function attaches the nonlinear solver to the main IDAS integrator. We note that at present, the SUNNonlinearSolver
object must be of type SUNNONLINEARSOLVER_ROOTFIND.

int IDASetNonlinearSolver (void *ida_mem, SUNNonlinearSolver NLS)
The function IDASetNonLinearSolver () attaches a SUNNonlinearSolver object (NLS) to IDAS.
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Arguments:

» ida_mem — pointer to the IDAS solver object.

e NLS — SUNNonlinearSolver object to use for solving nonlinear systems.
Return value:

e IDA_SUCCESS — The nonlinear solver was successfully attached.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TILL_INPUT - The SUNNonlinearSolver object is NULL , does not implement the required non-
linear solver operations, is not of the correct type, or the residual function, convergence test function,
or maximum number of nonlinear iterations could not be set.

Notes:
When forward sensitivity analysis capabilities are enabled and the IDA_STAGGERED corrector method is
used this function sets the nonlinear solver method for correcting state variables (see §5.4.2.3 for more
details).

5.1.4.7 Initial condition calculation function

IDACalcIC() calculates corrected initial conditions for the DAE system for certain index-one problems including a
class of systems of semi-implicit form (see §2.2 and [18]). It uses a Newton iteration combined with a linesearch
algorithm. Calling IDACalcIC() is optional. It is only necessary when the initial conditions do not satisfy the given
system. Thus if y® and yp® are known to satisfy F'(to,yo,%0) = 0, then a call to IDACalcIC() is generally not
necessary.

A call to the function IDACalcIC() must be preceded by successful calls to IDACreate() and IDAInit() (or
IDAReInit()), and by a successful call to the linear system solver specification function. The call to IDACalcIC()
should precede the call(s) to IDASolve () for the given problem.

int IDACalcIC(void *ida_mem, int icopt, realtype toutl)
The function IDACalcIC() corrects the initial values y® and yp® at time t®.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* icopt —is one of the following two options for the initial condition calculation.

— IDA_YA_YDP_INIT directs IDACalcIC() to compute the algebraic components of y and differ-
ential components of g, given the differential components of y. This option requires that the N_-
Vector id was set through IDASetId (), specifying the differential and algebraic components.

— IDA_Y_INIT directs ITDACalcIC() to compute all components of y, given . In this case, id is
not required.

e toutl —is the first value of ¢ at which a solution will be requested (from IDASolve()). This value is
needed here only to determine the direction of integration and rough scale in the independent variable
t.

Return value:
* IDA_SUCCESS — IDACalcIC() succeeded.
e IDA_MEM_NULL — The argument ida_mem was NULL.
e TDA_NO_MALLOC — The allocation function IDAInit () has not been called.

e IDA_ILL_INPUT — One of the input arguments was illegal.
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e IDA_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.
e TDA_LINIT_FAIL — The linear solver’s initialization function failed.
e TDA_LSOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.

e IDA_BAD_EWT — Some component of the error weight vector is zero (illegal), either for the input value
of y0 or a corrected value.

e IDA_FIRST_RES_FAIL — The user’s residual function returned a recoverable error flag on the first call,
but IDACalcIC() was unable to recover.

e IDA_RES_FAIL — The user’s residual function returned a nonrecoverable error flag.

e IDA_NO_RECOVERY — The user’s residual function, or the linear solver’s setup or solve function had a
recoverable error, but IDACalcIC() was unable to recover.

e IDA_CONSTR_FAIL — IDACalcIC() was unable to find a solution satisfying the inequality constraints.

e IDA_LINESEARCH_FAIL — The linesearch algorithm failed to find a solution with a step larger than
steptol in weighted RMS norm, and within the allowed number of backtracks.

e IDA_CONV_FAIL — IDACalcIC() failed to get convergence of the Newton iterations.

Notes:
IDACalcIC() will correct the values of y(tp) and y(to) which were specified in the previous call to
IDAInit() or IDAReInit (). To obtain the corrected values, call IDAGetConsistentIC().

5.1.4.8 Rootfinding initialization function

While solving the IVP, IDAS has the capability to find the roots of a set of user-defined functions. To activate the root
finding algorithm, call the following function. This is normally called only once, prior to the first call to IDASolve(),
but if the rootfinding problem is to be changed during the solution, IDARootInit () can also be called prior to a
continuation call to IDASolve().

int IDARootInit (void *ida_mem, int nrtfn, IDARootFn g)

The function IDARootInit () specifies that the roots of a set of functions g;(t, y) are to be found while the IVP
is being solved.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* nrtfn —is the number of root functions.

* g — is the function which defines the nrtfn functions g;(¢,y,y) whose roots are sought. See IDA-
RootFn for more details.

Return value:
* IDA_SUCCESS — The call was successful.
e IDA_MEM_NULL — The ida_mem argument was NULL.
e IDA_MEM_FAIL — A memory allocation failed.
e IDA_ILL_INPUT - The function g is NULL, but nrtfn > 0.

Notes:
If a new IVP is to be solved with a call to IDAReInit (), where the new IVP has no rootfinding problem
but the prior one did, then call IDARootInit () withnrtfn = 0.
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5.1.4.9 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. The input arguments
(itask) specifies one of two modes as to where IDAS is to return a solution. These modes are modified if the user has
set a stop time (with IDASetStopTime ()) or requested rootfinding (with IDARootInit()).

int IDASolve (void *ida_mem, realtype tout, realtype *tret, N_Vector yret, N_Vector ypret, int itask)

The function IDASolve () integrates the DAE over an interval in t.

Arguments:

ida_mem — pointer to the IDAS solver object.

tout — the next time at which a computed solution is desired.
tret — the time reached by the solver output.

yret — the computed solution vector y.

ypret — the computed solution vector g.

itask — a flag indicating the job of the solver for the next user step

— IDA_NORMAL —the solver will take internal steps until it has reached or just passed the user specified
tout parameter. The solver then interpolates in order to return approximate values of y(t,,¢) and

y(tout)-

— IDA_ONE_STEP — the solver will just take one internal step and return the solution at the point
reached by that step.

Return value:

IDA_SUCCESS — The call was successful.

IDA_TSTOP_RETURN — IDASolve () succeeded by reaching the stop point specified through the op-
tional input function IDASetStopTime ().

IDA_ROOT_RETURN — IDASolve () succeeded and found one or more roots. In this case, tret is the
location of the root. If nrtfn >1, call IDAGetRootInfo() to see which g; were found to have a root.

IDA_MEM_NULL — The ida_mem argument was NULL.

IDA_ILL_INPUT — One of the inputs to IDASolve () was illegal, or some other input to the solver was
either illegal or missing. The latter category includes the following situations:

— The tolerances have not been set.

A component of the error weight vector became zero during internal time-stepping.

The linear solver initialization function called by the user after calling IDACreate () failed to set
the linear solver-specific 1solve field in ida_mem.

A root of one of the root functions was found both at a point ¢ and also very near ¢.
In any case, the user should see the printed error message for details.

IDA_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tout. The default
value for mxstep is MXSTEP_DEFAULT = 500.

IDA_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some inter-
nal step.

IDA_ERR_FAIL — Error test failures occurred too many times (MXNEF = 10) during one internal time
step or occurred with |A| = Apin.
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e IDA_CONV_FAIL — Convergence test failures occurred too many times (MXNCF = 10) during one in-
ternal time step or occurred with |h| = Amig.

e IDA_LINIT_FAIL - The linear solver’s initialization function failed.

e IDA_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.

* IDA_LSOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.

* IDA_CONSTR_FAIL — The inequality constraints were violated and the solver was unable to recover.

e IDA_REP_RES_ERR — The user’s residual function repeatedly returned a recoverable error flag, but the
solver was unable to recover.

e IDA_RES_FAIL — The user’s residual function returned a nonrecoverable error flag.
e IDA_RTFUNC_FAIL — The rootfinding function failed.

Notes:
The vectors yret and ypret can occupy the same space as the initial condition vectors y® and yp@, re-
spectively, that were passed to IDAInit ().

In the IDA_ONE_STEP mode, tout is used on the first call only, and only to get the direction and rough
scale of the independent variable.

If a stop time is enabled (through a call to IDASetStopTime()), then IDASolve () returns the solution
at tstop. Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be
reenabled only though a new call to IDASetStopTime()).

All failure return values are negative and therefore a test flag < ® will trap all IDASolve () failures.

On any error return in which one or more internal steps were taken by IDASolve (), the returned values
of tret, yret, and ypret correspond to the farthest point reached in the integration. On all other error
returns, these values are left unchanged from the previous IDASolve () return.

5.1.4.10 Optional input functions

There are numerous optional input parameters that control the behavior of the IDAS solver. IDAS provides functions
that can be used to change these optional input parameters from their default values. The main inputs are divided in
the following categories:

e Table 5.1 list the main IDAS optional input functions,

 Table 5.2 lists the IDALS linear solver interface optional input functions,

* Table 5.3 lists the IDANLS nonlinear solver interface optional input functions,
» Table 5.4 lists the initial condition calculation optional input functions,

 Table 5.5 lists the IDAS step size adaptivity optional input functions, and

Table 5.6 lists the rootfinding optional input functions.

These optional inputs are described in detail in the remainder of this section. For the most casual use of IDAS, the
reader can skip to §5.1.5.

We note that, on an error return, all of the optional input functions also send an error message to the error handler
function. All error return values are negative, so the test flag < 0 will catch all errors.

The optional input calls can, unless otherwise noted, be executed in any order. However, if the user’s program calls
either IDASetErrFile() or IDASetErrHandlerFn(), then that call should appear first, in order to take effect for any

later error message. Finally, a call to an IDASet*** function can, unless otherwise noted, be made at any time from
the user’s calling program and, if successful, takes effect immediately.
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Main solver optional input functions

Table 5.1: Optional inputs for IDAS

Optional input Function name Default
Pointer to an error file IDASetErrFile() stderr
Error handler function IDASetErrHandlerFn() internal fn.
User data IDASetUserData() NULL
Maximum order for BDF method IDASetMaxOrd() 5
Maximum no. of internal steps before ¢,,; IDASetMaxNumSteps() 500

Initial step size IDASetInitStep() estimated
Minimum absolute step size hmin IDASetMinStep() 0
Maximum absolute step size hmax IDASetMaxStep() 00

Value of t5¢0p IDASetStopTime () undefined
Disable the stop time IDAClearStopTime () N/A
Maximum no. of error test failures IDASetMaxErrTestFails() 10
Suppress alg. vars. from error test IDASetSuppressAlg() SUNFALSE
Variable types (differential/algebraic) IDASetId() NULL
Inequality constraints on solution IDASetConstraints() NULL

int IDASetErrFile(void *ida_mem, FILE *errfp)

The function IDASetErrFile() specifies the file pointer where all IDAS messages should be directed when
using the default IDAS error handler function.

Arguments:
» ida_mem — pointer to the IDAS solver object.
* errfp — pointer to output file.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The default value for errfp is stderr. Passing a value NULL disables all future error message output
(except for the case in which the IDAS memory pointer is NULL). This use of IDASetErrFile() is strongly
discouraged.

Warning: If IDASetErrFile() isto be called, it should be called before any other optional input functions,
in order to take effect for any later error message.

int IDASetErrHandlerFn (void *ida_mem, IDAErrHandlerFn ehfun, void *eh_data)

The function IDASetErrHandlerFn() specifies the optional user-defined function to be used in handling error
messages.

Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ ehfun - is the user’s error handler function. See IDAErrHandlerFn for more details.
* eh_data — pointer to user data passed to ehfun every time it is called.

Return value:
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* IDA_SUCCESS — The function ehfun and data pointer eh_data have been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
Error messages indicating that the IDAS solver memory is NULL will always be directed to stderr.

int IDASetUserData(void *ida_mem, void *user_data)
The function IDASetUserData() attaches a user-defined data pointer to the main IDAS solver object.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* user_data — pointer to the user data.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions that have it as an argument.
Otherwise, a NULL pointer is passed.

Warning: If user_data is needed in user linear solver or preconditioner functions, the call to IDASe-
tUserData () must be made before the call to specify the linear solver.

int IDASetMaxOrd (void *ida_mem, int maxord)

The function IDASetMaxOrd () specifies the maximum order of the linear multistep method.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* maxord — value of the maximum method order. This must be positive.
Return value:

* IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT - The input value maxordis <0, or larger than the max order value when IDAInit ()
was called.

Notes:
The default value is 5. If the input value exceeds 5, the value 5 will be used. If called before IDAInit (),
maxord limits the memory requirements for the internal IDAS memory block and its value cannot be in-
creased past the value set when IDAInit () was called.

int IDASetMaxNumSteps (void *ida_mem, long int mxsteps)

The function IDASetMaxNumSteps () specifies the maximum number of steps to be taken by the solver in its
attempt to reach the next output time.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* mxsteps — maximum allowed number of steps.

Return value:
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* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
Passing mxsteps = 0 results in IDAS using the default value (500). Passing mxsteps < 0 disables the test
(not recommended).

int IDASetInitStep (void *ida_mem, realtype hin)
The function TDASetTnitStep () specifies the initial step size.

Arguments:

* ida_mem — pointer to the IDAS solver object.

¢ hin — value of the initial step size to be attempted. Pass 0.0 to have IDAS use the default value.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
By default, IDAS estimates the initial step as the solution of ||hy|lw rars = 1/2, with an added restriction
that |h| < .001|tou — to)-

int IDASetMinStep (void *ida_mem, realtype hmin)

The function IDASetMinStep () specifies the minimum absolute value of the step size.
Pass hmin = 0 to obtain the default value of 0.
Arguments:
* ida_mem — pointer to the IDAS solver object.
e hmin — minimum absolute value of the step size.
Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_ILL_INPUT — hmin is negative.
New in version 5.2.0.

int IDASetMaxStep (void *ida_mem, realtype hmax)

The function IDASetMaxStep () specifies the maximum absolute value of the step size.
Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ hmax — maximum absolute value of the step size.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_ILL_INPUT - Either hmax is not positive or it is smaller than the minimum allowable step.

Notes:
Pass hmax = 0 to obtain the default value co.
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int IDASetStopTime (void *ida_mem, realtype tstop)

The function IDASetStopTime () specifies the value of the independent variable ¢ past which the solution is not
to proceed.

Arguments:

* ida_mem — pointer to the IDAS solver object.

e tstop — value of the independent variable past which the solution should not proceed.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_ILL_INPUT — The value of tstop is not beyond the current ¢ value, ¢,,.

Notes:
The default, if this routine is not called, is that no stop time is imposed. Once the integrator returns at
a stop time, any future testing for tstop is disabled (and can be reenabled only though a new call to
IDASetStopTime()).

A stop time not reached before a call to IDAReInit () will remain active but can be disabled by calling
IDAClearStopTime().

int IDAClearStopTime (void *ida_mem)
Disables the stop time set with IDASetStopTime ().

Arguments:

¢ ida_mem — pointer to the IDA memory block.
Return value:

» IDA_SUCCESS if successful

e IDA_MEM_NULL if the IDA memory is NULL

Notes:
The stop time can be reenabled though a new call to IDASetStopTime ().

New in version 6.5.1.

int IDASetMaxErrTestFails (void *ida_mem, int maxnef)

The function IDASetMaxErrTestFails() specifies the maximum number of error test failures in attempting
one step.

Arguments:

e ida_mem — pointer to the IDAS solver object.

* maxnef — maximum number of error test failures allowed on one step (>0).
Return value:

* IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The default value is 10.
int IDASetSuppressAlg(void *ida_mem, booleantype suppressalg)

The function IDASetSuppressAlg () indicates whether or not to suppress algebraic variables in the local error
test.
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Arguments:
* ida_mem — pointer to the IDAS solver object.

* suppressalg — indicates whether to suppress (SUNTRUE) or include (SUNFALSE) the algebraic vari-
ables in the local error test.

Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The default value is SUNFALSE. If suppressalg = SUNTRUE is selected, then the id vector must be set
(through IDASetId()) to specify the algebraic components. In general, the use of this option (with sup-
pressalg = SUNTRUE) is discouraged when solving DAE systems of index 1, whereas it is generally
encouraged for systems of index 2 or more. See pp. 146-147 of [13] for more on this issue.

int IDASetId(void *ida_mem, N_Vector id)
The function IDASetId() specifies algebraic/differential components in the y vector.
Arguments:
* ida_mem — pointer to the IDAS solver object.

* id - a vector of values identifying the components of y as differential or algebraic variables. A value
of 1.0 indicates a differential variable, while 0.0 indicates an algebraic variable.

Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The vector id is required if the algebraic variables are to be suppressed from the local error test (see
IDASetSuppressAlg()) orif IDACalcIC() is to be called with icopt = IDA_YA_YDP_INIT.

int IDASetConstraints(void *ida_mem, N_Vector constraints)

The function IDASetConstraints () specifies a vector defining inequality constraints for each component of
the solution vector y.

Arguments:
* ida_mem — pointer to the IDAS solver object.

e constraints — vector of constraint flags.

If constraints[i] = 0, no constraint is imposed on y;.

If constraints[i] = 1, y; will be constrained to be y; > 0.0.

If constraints[i] = -1, y; will be constrained to be y; < 0.0.

If constraints[i] = 2, y; will be constrained to be y; > 0.0.
— If constraints[i] = -2, y; will be constrained to be y; < 0.0.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT - The constraints vector contains illegal values or the simultaneous corrector option
has been selected when doing forward sensitivity analysis.
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Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints vector will result in an illegal
input return. A NULL input will disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous corrector option is cur-
rently disallowed and will result in an illegal input return.

Linear solver interface optional input functions

Table 5.2: Optional inputs for the IDALS linear solver interface

Optional input Function name Default

Jacobian function IDASetJacFn() DQ

Set parameter determining if a ¢; change requires a linear solver  IDASetDeltaCjLSetup() 0.25

setup call

Enable or disable linear solution scaling IDASetLinearSolution- on

Scaling()

Jacobian-times-vector function IDASetJacTimes () NULL, DQ

Preconditioner functions IDASetPreconditioner() NULL,
NULL

Ratio between linear and nonlinear tolerances IDASetEpsLin() 0.05

Increment factor used in DQ Jv approx. IDASetIncrementFactor() 1.0

Jacobian-times-vector DQ Res function IDASetJacTimesResFn() NULL

Newton linear solve tolerance conversion factor IDASetLSNormFactor() vector
length

The mathematical explanation of the linear solver methods available to IDAS is provided in §2.2. We group the user-
callable routines into four categories: general routines concerning the overall IDALS linear solver interface, optional
inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and optional inputs for iterative
linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive, whereas the “iterative”
tag can apply to either case.

When using matrix-based linear solver modules, the IDALS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix J(¢,y, y). This function must be of type IDALsJacFn. The user can supply a Jacobian
function or, if using the SUNMATRIX_DENSE or SUNMATRIX_BAND modules for the matrix J, can use the default
internal difference quotient approximation that comes with the IDALS interface. To specify a user-supplied Jacobian
function jac, IDALS provides the function IDASetJacFn(). The IDALS interface passes the pointer user_data to
the Jacobian function. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied Jacobian function, without using global data in the program. The pointer
user_data may be specified through IDASetUserData().
int IDASetJacFn(void *ida_mem, /DALsJacFn jac)
The function IDASetJacFn () specifies the Jacobian approximation function to be used for a matrix-based solver
within the IDALS interface.
Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ jac —user-defined Jacobian approximation function. See IDALsJacFn for more details.
Return value:
e IDALS_SUCCESS — The optional value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.
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e IDALS_LMEM_NULL — The IDALS linear solver interface has not been initialized.

Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolver (). By default, IDALS uses an internal difference quotient function for the SUN-
MATRIX_DENSE and SUNMATRIX_BAND modules. If NULL is passed to jac, this default function is
used. An error will occur if no jac is supplied when using other matrix types.

Warning: The previous routine IDAD1sSetJacFn() is now a wrapper for this routine, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new routine name soon.

When using a matrix-based linear solver the matrix information will be updated infrequently to reduce matrix construc-
tion and, with direct solvers, factorization costs. As a result the value of o may not be current and a scaling factor is
applied to the solution of the linear system to account for the lagged value of .. See §8.2.1 for more details. The func-
tion IDASetLinearSolutionScaling() can be used to disable this scaling when necessary, e.g., when providing a
custom linear solver that updates the matrix using the current « as part of the solve.

int IDASetDeltaCjLSetup (void *ida_mem, realtype dcj)

The function IDASetDeltaCjLSetup specifies the parameter that determines the bounds on a change in c;
that require a linear solver setup call. If cj_current / cj_previous < (1 - dcj) / (1 + dcj)orcj_-
current / cj_previous > (1 + dcj) / (1 - dcj), the linear solver setup function is called.

If dcj is < 0 or > 1 then the default value (0.25) is used.
Arguments:
* ida_mem — pointer to the IDAS memory block.
* dcj —the ¢; change threshold.
Return value:
e IDA_SUCCESS — The flag value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

New in version 5.2.0.

int IDASetLinearSolutionScaling(void *ida_mem, booleantype onoff)

The function IDASetLinearSolutionScaling() enables or disables scaling the linear system solution to ac-
count for a change in « in the linear system. For more details see §8.2.1.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* onoff — flag to enable (SUNTRUE) or disable (SUNFALSE) scaling.
Return value:
e IDALS_SUCCESS — The flag value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver interface has not been initialized.
e IDALS_ILL_INPUT - The attached linear solver is not matrix-based.

Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolver (). By default scaling is enabled with matrix-based linear solvers.
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When using matrix-free linear solver modules, the IDALS solver interface requires a function to compute an approxima-
tion to the product between the Jacobian matrix J(t, y, ¢) and a vector v. The user can supply a Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the IDALS solver
interface.

A user-defined Jacobian-vector product function must be of type IDALsJacTimesVecFn and can be specified through a
call to IDASetJacTimes (). The evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-
vector product function may be done in the optional user-supplied function jtsetup (see §5.1.5.7 for specification
details). The pointer user_data received through IDASetUserData() (or a pointer to NULL if user_data was not
specified) is passed to the Jacobian-vector product setup and product functions, jtsetup and jtimes, each time they
are called. This allows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied functions without using global data in the program.

int IDASetJacTimes (void *ida_mem, IDALsJacTimesSetupFn jsetup, IDALsJacTimesVecFn jtimes)

The function IDASetJacTimes () specifies the Jacobian-vector product setup and product functions.
Arguments:
* ida_mem — pointer to the IDAS solver object.

* jtsetup —user-defined function to set up the Jacobian-vector product. See IDALsJacTimesSetupFn
for more details. Pass NULL if no setup is necessary.

* jtimes —user-defined Jacobian-vector product function. See IDALsJacTimesVecFn for more details.
Return value:

* IDALS_SUCCESS — The optional value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

* IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

e IDALS_SUNLS_FAIL — An error occurred when setting up the system matrix-times-vector routines in
the SUNLinearSolver object used by the IDALS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to omit jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup
inputs. This function must be called after the IDALS linear solver interface has been initialized through a
call to IDASetLinearSolver().

Warning: The previous routine IDASpilsSetJacTimes() is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

When using the default difference-quotient approximation to the Jacobian-vector product, the user may specify the
factor to use in setting increments for the finite-difference approximation, via a call to IDASetIncrementFactor().

int IDASetIncrementFactor (void *ida_mem, realtype dgincfac)
The function IDASetIncrementFactor () specifies the increment factor to be used in the difference-quotient
approximation to the product Jv. Specifically, Jv is approximated via the formula

1 -

Jo=—[F(t.§.9) ~ F(t.y.5)].

where §j = y + ov, § = 1§ + c¢jov, ¢;j is a BDF parameter proportional to the step size, o = dgincfacv N, and
N is the number of equations in the DAE system.

Arguments:
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* ida_mem — pointer to the IDAS solver object.
* dgincfac — user-specified increment factor positive.
Return value:
* IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
e IDALS_ILL_INPUT — The specified value of dqincfacis < 0.

Notes:
The default value is 1.0. This function must be called after the IDALS linear solver interface has been
initialized through a call to IDASetLinearSolver().

Warning: The previous routine IDASpilsSetIncrementFactor () is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

Additionally, when using the internal difference quotient, the user may also optionally supply an alternative residual
function for use in the Jacobian-vector product approximation by calling IDASetJacTimesResFn(). The alternative
residual function should compute a suitable (and differentiable) approximation to the residual function provided to
IDAInit(). For example, as done in [30] for an ODE in explicit form, the alternative function may use lagged values
when evaluating a nonlinearity to avoid differencing a potentially non-differentiable factor.

int IDASetJacTimesResFn(void *ida_mem, IDAResFn jtimesResFn)
The function IDASetJacTimesResFn() specifies an alternative DAE residual function for use in the internal
Jacobian-vector product difference quotient approximation.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* jtimesResFn — is the function which computes the alternative DAE residual function to use in
Jacobian-vector product difference quotient approximations. See IDAResFn for more details.

Return value:
e IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
e IDALS_TLL_INPUT - The internal difference quotient approximation is disabled.

Notes:
The default is to use the residual function provided to IDAInit () in the internal difference quotient. If the
input resudual function is NULL, the default is used. This function must be called after the IDALS linear
solver interface has been initialized through a call to IDASetLinearSolver().

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to IDAS using the function
IDASetPreconditioner (). The psetup function supplied to this routine should handle evaluation and preprocessing
of any Jacobian data needed by the user’s preconditioner solve function, psolve. Both of these functions are fully
specified in §5.1.5.8 and §5.1.5.9). The user data pointer received through IDASetUserData () (or NULL if a user data
pointer was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.
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int IDASetPreconditioner (void *ida_mem, /DALsPrecSetupFn psetup, IDALsPrecSolveFn psolve)

The function IDASetPreconditioner () specifies the preconditioner setup and solve functions.
Arguments:
* ida_mem — pointer to the IDAS solver object.

* psetup —user-defined function to set up the preconditioner. See IDALsPrecSetupFn for more details.
Pass NULL if no setup is necessary.

* psolve —user-defined preconditioner solve function. See IDALsPrecSolveFn for more details.
Return value:

» IDALS_SUCCESS — The optional values have been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

e IDALS_SUNLS_FAIL — An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the IDALS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning). This function must be called after the
IDALS linear solver interface has been initialized through a call to IDASetLinearSolver ().

Warning: The previous routine IDASpilsSetPreconditioner() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

Also, as described in §2.2, the IDALS interface requires that iterative linear solvers stop when the norm of the precon-
ditioned residual satisfies

€L€

10

where ¢ is the nonlinear solver tolerance, and the default e;, = 0.05; this value may be modified by the user through
the IDASetEpsLin() function.

Il <

int IDASetEpsLin(void *ida_mem, realtype eplifac)

The function IDASetEpsLin () specifies the factor by which the Krylov linear solver’s convergence test constant
is reduced from the nonlinear iteration test constant.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* eplifac - linear convergence safety factor > 0.0.
Return value:
e IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
e IDALS_ILL_INPUT - The factor eplifac is negative.

Notes:
The default value is 0.05. This function must be called after the IDALS linear solver interface has been
initialized through a call to IDASetLinearSolver(). If eplifac = 0.0 is passed, the default value is
used.
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Warning: The previous routine IDASpilsSetEpsLin() is now a wrapper for this routine, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new routine name soon.

int IDASetLSNormFactor (void *ida_mem, realtype nrmfac)

The function IDASetLSNormFactor () specifies the factor to use when converting from the integrator tolerance

(WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac *
tol_WRNMS.

Arguments:
* ida_mem — pointer to the IDAS solver object.
e nrmfac — the norm conversion factor.
— If nrmfac > 0, the provided value is used.

— If nrmfac = O then the conversion factor is computed using the vector length i.e., nrmfac =
N_VGetLength(y) (default).

— If nrmfac < 0 then the conversion factor is computed using the vector dot product nrmfac =
N_VDotProd(v,v) where all the entries of v are one.

Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:

This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolver(). Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 (IDAS
v4.0.0) the value of nrmfac was computed using N_VDotProd() i.e., the nrmfac < 0 case.

Nonlinear solver interface optional input functions

Table 5.3: Optional inputs for the IDANLS nonlinear solver interface

Optional input Function name Default
Maximum no. of nonlinear iterations IDASetMaxNonlinIters() 4
Maximum no. of convergence failures IDASetMaxConvFails() 10
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef() 0.33
Residual function for nonlinear system evaluations IDASetNlsResFn() NULL

The following functions can be called to set optional inputs controlling the nonlinear solver.
int IDASetMaxNonlinIters(void *ida_mem, int maxcor)

The function IDASetMaxNonlinIters() specifies the maximum number of nonlinear solver iterations in one
solve attempt.

Arguments:
* ida_mem — pointer to the IDAS solver object.

* maxcor — maximum number of nonlinear solver iterations allowed in one solve attempt (>0).

Return value:

* IDA_SUCCESS — The optional value has been successfully set.
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e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_MEM_FAIL — The SUNNonlinearSolver object is NULL.

Notes:
The default value is 4.

int IDASetMaxConvFails (void *ida_mem, int maxncf)

The function IDASetMaxConvFails () specifies the maximum number of nonlinear solver convergence failures
in one step.

Arguments:

* ida_mem — pointer to the IDAS solver object.

¢ maxncf — maximum number of allowable nonlinear solver convergence failures in one step (>0).
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The default value is 10.

int IDASetNonlinConvCoef (void *ida_mem, realtype nlscoef)
The function IDASetNonlinConvCoef () specifies the safety factor in the nonlinear convergence test; see (2.8).

Arguments:
* ida_mem — pointer to the IDAS solver object.
* nlscoef — coefficient in nonlinear convergence test (>0.0).
Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_TLL_INPUT — The value of nlscoef is < 0.0.

Notes:
The default value is 0.33.

int IDASetN1sResFn(void *ida_mem, /DAResFn res)

The function IDASetN1sResFn() specifies an alternative residual function for use in nonlinear system function
evaluations.

Arguments:
* ida_mem — pointer to the IDAS solver object.

* res - the alternative function which computes the DAE residual function F'(t,y,y). See IDAResFn
for more details.

Return value:
* IDA_SUCCESS — The optional function has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The default is to use the residual function provided to IDAInit () in nonlinear system function evaluations.
If the input residual function is NULL, the default is used.
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When using a non-default nonlinear solver, this function must be called after IDASetNonlinearSolver().

When doing forward sensitivity analysis with the simultaneous solver strategy is function must be called
after IDASetNonlinearSolverSensSim().

Initial condition calculation optional input functions

Table 5.4: Optional inputs for IDAS initial condition calculation

Optional input Function name Default
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC() 0.0033
Maximum no. of steps IDASetMaxNumStepsIC() 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC() 4
Maximum no. of Newton iterations IDASetMaxNumItersIC() 10

Max. linesearch backtracks per Newton iter. IDASetMaxBacksIC() 100

Turn off linesearch IDASetLineSearchOffIC() SUNFALSE
Lower bound on Newton step IDASetStepToleranceIC() uround?/3

The following functions can be called just prior to calling IDACalcIC() to set optional inputs controlling the initial
condition calculation.

int IDASetNonlinConvCoefIC(void *ida_mem, realtype epiccon)

The function IDASetNonlinConvCoefIC() specifies the positive constant in the Newton iteration convergence
test within the initial condition calculation.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* epiccon - coefficient in the Newton convergence test (> 0).
Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_TILL_INPUT - The epiccon factor is < 0.0.

Notes:
The default value is 0.01 - 0.33. This test uses a weighted RMS norm (with weights defined by the
tolerances). For new initial value vectors y and ¥ to be accepted, the norm of J~1F(tg,y, %) must be
< epiccon, where J is the system Jacobian.

int IDASetMaxNumStepsIC(void *ida_mem, int maxnh)
The function IDASetMaxNumStepsIC() specifies the maximum number of steps allowed when icopt = IDA_-

oF 1\ OF
YA_YDP_INIT in IDACalcIC(), where h appears in the system Jacobian, J = 0 + (h) 90
Y Y
Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ maxnh — maximum allowed number of values for h.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

96 Chapter 5. Using IDAS



User Documentation for IDAS, v5.5.1

e IDA_TLL_INPUT — maxnh is non-positive.

Notes:
The default value is 5.

int IDASetMaxNumJacsIC(void *ida_mem, int maxnj)

The function IDASetMaxNumJacsIC() specifies the maximum number of the approximate Jacobian or precon-
ditioner evaluations allowed when the Newton iteration appears to be slowly converging.

Arguments:

* ida_mem — pointer to the IDAS solver object.

* maxnj — maximum allowed number of Jacobian or preconditioner evaluations.
Return value:

* IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT — maxnj is non-positive.

Notes:
The default value is 4.

int IDASetMaxNumItersIC(void *ida_mem, int maxnit)

The function IDASetMaxNumItersIC() specifies the maximum number of Newton iterations allowed in any
one attempt to solve the initial conditions calculation problem.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* maxnit — maximum number of Newton iterations.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT — maxnit is non-positive.

Notes:
The default value is 10.

int IDASetMaxBacksIC(void *ida_mem, int maxbacks)

The function IDASetMaxBacksIC() specifies the maximum number of linesearch backtracks allowed in any
Newton iteration, when solving the initial conditions calculation problem.

Arguments:

* ida_mem — pointer to the IDAS solver object.

¢ maxbacks — maximum number of linesearch backtracks per Newton step.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT — maxbacks is non-positive.
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Notes:
The default value is 100.

If IDASetMaxBacksIC() is called in a Forward Sensitivity Analysis, the the limit maxbacks applies in
the calculation of both the initial state values and the initial sensititivies.

int IDASetLineSearchOffIC(void *ida_mem, booleantype 1soff)
The function IDASetLineSearchOffIC() specifies whether to turn on or off the linesearch algorithm.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* 1soff —aflag to turn off (SUNTRUE) or keep (SUNFALSE) the linesearch algorithm.
Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
Notes:
The default value is SUNFALSE.

int IDASetStepToleranceIC(void *ida_mem, int steptol)

The function IDASetStepToleranceIC() specifies a positive lower bound on the Newton step.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* steptol — Minimum allowed WRMS-norm of the Newton step (> 0.0).
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_ILL_INPUT - The steptol tolerance is < 0.0.

Notes:
The default value is (unit roundoff)?/3.

Time step adaptivity optional input functions

Table 5.5: Optional inputs for IDAS time step adaptivity

Optional input Function name Default

Fixed step size bounds Nmin_gx and Nmax_gx IDASetEtaFixedStep- 1.0 and
Bounds () 2.0

Maximum step size growth factor 7y,ax IDASetEtaMax () 2.0

Minimum step size reduction factor 9in IDASetEtaMin() 0.5

Maximum step size reduction factor 7oy, IDASetEtaLow() 0.9

Minimum step size reduction factor after an error test failure 7y,i, ¢ IDASetEtaMinErrFail () 0.25

Step size reduction factor after a nonlinear solver convergence fail- IDASetEtaConvFail() 0.25

ure 7jct

The following functions can be called to set optional inputs to control the step size adaptivity.
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Note: The default values for the step size adaptivity tuning parameters have a long history of success and changing
the values is generally discouraged. However, users that wish to experiment with alternative values should be careful
to make changes gradually and with testing to determine their effectiveness.

int IDASetEtaFixedStepBounds (void *ida_mem, realtype eta_min_fx, realtype eta_max_fx)

The function IDASetEtaFixedStepBounds specifies the bounds 7min_x and Nmax_sx. If step size change factor
7 satisfies Mmin_tx < 17 < Mmax_fx the current step size is retained.

The default values are Nexmin = 1 and Nexemax = 2.

eta_fxmin should satisfy 0 < 7gmin < 1, otherwise the default value is used. eta_fxmax should satisfy

Nexmin = 1, otherwise the default value is used.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* eta_min_fx — value of the fixed step size lower bound.

* eta_max_fx — value of the fixed step size upper bound.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

New in version 5.2.0.

int IDASetEtaMax (void *ida_mem, realtype eta_max)

The function IDASetEtaMax specifies the maximum step size growth factor 7, ,x-
The default value is nymax = 2.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* eta_max — maximum step size growth factor.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
New in version 5.2.0.

int IDASetEtaMin (void *ida_mem, realtype eta_min)

The function IDASetEtaMin specifies the minimum step size reduction factor 7y -
The default value is iy = 0.5.
eta_min should satisfy 0 < nyin < 1, otherwise the default value is used.
Arguments:

* ida_mem — pointer to the IDAS solver object.

e eta_min — value of the minimum step size reduction factor.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.
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New in version 5.2.0.

int IDASetEtaLow(void *ida_mem, realtype eta_low)
The function IDASetEtaLow specifies the maximum step size reduction factor 7oy
The default value is 710w, = 0.9.
eta_low should satisfy 0 < mow < 1, otherwise the default value is used.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* eta_low — value of the maximum step size reduction factor.
Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

New in version 5.2.0.

int IDASetEtaMinErrFail (void *ida_mem, realtype eta_min_ef)

The function IDASetEtaMinErrFail specifies the minimum step size reduction factor 7, o after an error
test failure.

The default value is Nyin o = 0.25.
If eta_min_ef is < 0 or > 1, the default value is used.
Arguments:
* ida_mem — pointer to the IDAS solver object.
e eta_low — value of the minimum step size reduction factor.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
New in version 5.2.0.

int IDASetEtaConvFail (void *ida_mem, realtype eta_cf)

The function IDASetEtaConvFail specifies the step size reduction factor 7.¢ after a nonlinear solver conver-
gence failure.

The default value is 1. = 0.25.
If eta_cf is < 0 or > 1, the default value is used.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* eta_low — value of the step size reduction factor.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

New in version 5.2.0.
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Rootfinding optional input functions

Table 5.6: Optional inputs for IDAS rootfinding

Optional input Function name Default
Direction of zero-crossing IDASetRootDirection() both
Disable rootfinding warnings IDASetNoInactiveRootWarn() none

The following functions can be called to set optional inputs to control the rootfinding algorithm.
int IDASetRootDirection(void *ida_mem, int *rootdir)

The function IDASetRootDirection() specifies the direction of zero-crossings to be located and returned to
the user.

Arguments:
* ida_mem — pointer to the IDAS solver object.

* rootdir — state array of length nrtfn, the number of root functions g; , as specified in the call to the
function IDARootInit ().

— A value of 0 for rootdir[i] indicates that crossing in either direction should be reported for g;.

— A value of +1 or —1 for rootdir[i] indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:

* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_ILL_INPUT - rootfinding has not been activated through a call to IDARootInit().

Notes:
The default behavior is to locate both zero-crossing directions.

int IDASetNoInactiveRootWarn (void *ida_mem)

The function IDASetNoInactiveRootWarn() disables issuing a warning if some root function appears to be
identically zero at the beginning of the integration.

Arguments:

* ida_mem — pointer to the IDAS solver object.

Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.
Notes:
IDAS will not report the initial conditions as a possible zero-crossing (assuming that one or more compo-

nents g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial time

(i-e., g; is zero at the initial time and after the first step), IDAS will issue a warning which can be disabled
with this optional input function.
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5.1.4.11 Interpolated output function

An optional function IDAGetDky () is available to obtain additional output values. This function must be called after
a successful return from IDASolve () and provides interpolated values of y or its derivatives of order up to the last
internal order used for any value of ¢ in the last internal step taken by IDAS.

int IDAGetDky (void *ida_mem, realtype t, int k, N_Vector dky)

The function IDAGetDky () computes the interpolated values of the k*" derivative of y for any value of ¢ in the
last internal step taken by IDAS. The value of k£ must be non-negative and smaller than the last internal order
used. A value of 0 for £ means that the y is interpolated. The value of ¢ must satisfy ¢,, — h,, < ¢t < ¢t,,, where
t,, denotes the current internal time reached, and h,, is the last internal step size used successfully.

Arguments:

* ida_mem — pointer to the IDAS solver object.

* t — time at which to interpolate.

* k — integer specifying the order of the derivative of y wanted.

» dky — vector containing the interpolated k*" derivative of y/(t).
Return value:

* IDA_SUCCESS — IDAGetDky () succeeded.

e IDA_MEM_NULL — The ida_mem argument was NULL.

* IDA_BAD_T - t is not in the interval [t,, — Ry, ty].

e IDA_BAD_K-kisnotone of 0,1,..., kjg.

e IDA_BAD_DKY — dky is NULL.

Notes:
It is only legal to call the function IDAGetDky () after a successful return from IDASolve (). Functions
IDAGetCurrentTime (), IDAGetLastStep() and IDAGetLastOrder () can be used to access t,,, h,,
and Kjag.

5.1.4.12 Optional output functions

IDAS provides an extensive list of functions that can be used to obtain solver performance information. Table 5.7 lists
all optional output functions in IDAS, which are then described in detail in the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining how successful the
IDAS solver is in doing its job. For example, the counters nsteps and nrevals provide a rough measure of the overall
cost of a given run, and can be compared among runs with differing input options to suggest which set of options is
most efficient. The ratio nniters/nsteps measures the performance of the nonlinear solver in solving the nonlinear
systems at each time step; typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of
a matrix-based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian or preconditioner being
used. Thus, for example, njevals/nniters can indicate if a user-supplied Jacobian is inaccurate, if this ratio is larger
than for the case of the corresponding internal Jacobian. The ratio nliters/nniters measures the performance of
the Krylov iterative linear solver, and thus (indirectly) the quality of the preconditioner.
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Table 5.7: Optional outputs for IDAS, IDALS, and IDANLS

Optional output

Function name

Size of IDAS real and integer workspace
Cumulative number of internal steps

No. of calls to residual function

No. of calls to linear solver setup function

IDAGetlWorkSp:
IDAGetNumStey
IDAGetNumRes!
IDAGetNumLinsS

No. of local error test failures that have occurred | IDAGetNumErrTestFails ()
No. of failed steps due to a nonlinear solver failure | IDAGetNumStepSolveFails ()

Order used during the last step

Order to be attempted on the next step

Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling

Error weight vector for state variables
Estimated local errors

All IDA integrator statistics

No. of nonlinear solver iterations

No. of nonlinear convergence failures

IDA nonlinear solver statistics

User data pointer

Array showing roots found

No. of calls to user root function

Print all statistics

Name of constant associated with a return flag
Number of backtrack operations

Corrected initial conditions

Stored Jacobian of the DAE residual function
c; value used in the Jacobian evaluation
Time at which the Jacobian was evaluated
Step number at which the Jacobian was evaluated
Size of real and integer workspace

No. of Jacobian evaluations

No. of residual calls for finite diff. Jacobian-vector evals.

No. of linear iterations

No. of linear convergence failures

No. of preconditioner evaluations

No. of preconditioner solves

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations
Last return from a linear solver function
Name of constant associated with a return flag

IDAGetLastOrc
IDAGetCurrent
IDAGetActuall
IDAGetLastSte
IDAGetCurrent
IDAGetCurrent
IDAGetTolScal
IDAGetErrieic
IDAGetEstLoc:
IDAGetIntegre
IDAGetNumNon]
IDAGetNumNon]
IDAGetNonlins
IDAGetUserDat
IDAGetRootIni
IDAGetNumGEv:
IDAPrintAl11St
IDAGetReturnl
IDAGetNumBacl
IDAGetConsist
IDAGetJac()

IDAGetJacCj(
IDAGetJacTime
IDAGetJacNum!
IDAGetLinlorlk
IDAGetNumJact
IDAGetNumLink
IDAGetNumLin]
IDAGetNumLin(
IDAGetNumPrec
IDAGetNumPrec
IDAGetNumJTSe
IDAGetNumJtin
IDAGetLastLir
IDAGetLinRett
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Main solver optional output functions

IDAS provides several user-callable functions that can be used to obtain different quantities that may be of interest to
the user, such as solver workspace requirements, solver performance statistics, as well as additional data from the IDAS
solver object (a suggested tolerance scaling factor, the error weight vector, and the vector of estimated local errors).
Also provided are functions to extract statistics related to the performance of the nonlinear solver being used. As a
convenience, additional extraction functions provide the optional outputs in groups. These optional output functions
are described next.

int IDAGetWorkSpace (void *ida_mem, long int *lenrw, long int *leniw)
The function IDAGetWorkSpace () returns the IDAS real and integer workspace sizes.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* lenrw — number of real values in the IDAS workspace.
* leniw — number of integer values in the IDAS workspace.
Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
In terms of the problem size IV, the maximum method order maxord, and the number of root functions
nrtfn (see §5.1.4.8), the actual size of the real workspace, in realtype words, is given by the following:

* base value: lenrw = 55 4 (m + 6) * N, + 3 * nrtfn;
e with IDASVtolerances(): lenrw = lenrw + NN,;
 with constraint checking (see IDASetConstraints()): lenrw = lenrw + N,
» with id specified (see IDASetId()): lenrw = lenrw + [V,;
where m = max(maxord, 3), and N, is the number of real words in one N_Vector (=~ N).
The size of the integer workspace (without distinction between int and long int words) is given by:
* base value: leniw = 38 + (m + 6) * N; + nrtfn;
e with IDASVtolerances(): leniw = leniw + IV;;
 with constraint checking: lenrw = lenrw + N;;
e with id specified (see IDASetId()): lenrw = lenrw + IN;;

where NN; is the number of integer words in one N_Vector (= 1 for the serial N_Vector and 2 * npes
for the parallel N_Vector on npes processors). For the default value of maxord, with no rootfinding, no
id, no constraints, and with no call to IDASVtolerances (), these lengths are given roughly by lenrw =
554 11 % N and leniw = 49.

Note that additional memory is allocated if quadratures and/or forward sensitivity integration is enabled.
See §5.2.1 and §5.4.2.1 for more details.

int IDAGetNumSteps (void *ida_mem, long int *nsteps)

The function IDAGetNumSteps () returns the cumulative number of internal steps taken by the solver (total so
far).

Arguments:

* ida_mem — pointer to the IDAS solver object.
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* nsteps — number of steps taken by IDAS.

Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetNumResEvals (void *ida_mem, long int *nrevals)

The function IDAGetNumResEvals () returns the number of calls to the user’s residual evaluation function.
Arguments:

* ida_mem — pointer to the IDAS solver object.

e nrevals — number of calls to the user’s res function.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
The nrevals value returned by IDAGetNumResEvals () does not account for calls made to res from a
linear solver or preconditioner module.

int IDAGetNumLinSolvSetups (void *ida_mem, long int *nlinsetups)

The function IDAGetNumLinSolvSetups () returns the cumulative number of calls made to the linear solver’s
setup function (total so far).

Arguments:
* ida_mem — pointer to the IDAS solver object.
* nlinsetups — number of calls made to the linear solver setup function.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
int IDAGetNumErrTestFails (void *ida_mem, long int *netfails)

The function IDAGetNumErrTestFails () returns the cumulative number of local error test failures that have
occurred (total so far).

Arguments:
¢ ida_mem — pointer to the IDAS solver object.
* netfails — number of error test failures.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetNumStepSolveFails (void *ida_mem, long int *ncnf)

Returns the number of failed steps due to a nonlinear solver failure.
Arguments:
* ida_mem — pointer to the IDAS solver object.

e ncnf — number of step failures.
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Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetLastOrder (void *ida_mem, int *klast)

The function IDAGetLastOrder () returns the integration method order used during the last internal step.
Arguments:

* ida_mem — pointer to the IDAS solver object.

e klast — method order used on the last internal step.
Return value:

* IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetCurrentOrder (void *ida_mem, int *kcur)

The function IDAGetCurrentOrder () returns the integration method order to be used on the next internal step.
Arguments:

* ida_mem — pointer to the IDAS solver object.

e kcur — method order to be used on the next internal step.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetLastStep (void *ida_mem, realtype *hlast)

The function IDAGetLastStep () returns the integration step size taken on the last internal step (if from IDA-
Solve()), or the last value of the artificial step size h (if from IDACalcIC()).

Arguments:
* ida_mem — pointer to the IDAS solver object.

* hlast - step size taken on the last internal step by IDAS, or last artificial step size used in IDACal-
cIC() , whichever was called last.

Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetCurrentStep (void *ida_mem, realtype *hcur)

The function IDAGetCurrentStep () returns the integration step size to be attempted on the next internal step.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* hcur - step size to be attempted on the next internal step.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.
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int IDAGetActualInitStep (void *ida_mem, realtype *hinused)
The function IDAGetActualInitStep() returns the value of the integration step size used on the first step.

Arguments:
» ida_mem — pointer to the IDAS solver object.
* hinused — actual value of initial step size.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
Notes:

Even if the value of the initial integration step size was specified by the user through a call to IDASetInitStep(),
this value might have been changed by IDAS to ensure that the step size is within the prescribed bounds (A, <
ho < Rz ), Or to meet the local error test.

int IDAGetCurrentTime (void *ida_mem, realtype *tcur)

The function IDAGetCurrentTime () returns the current internal time reached by the solver.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* tcur - current internal time reached.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetTolScaleFactor (void *ida_mem, realtype *tolsfac)

The function IDAGetTolScaleFactor () returns a suggested factor by which the user’s tolerances should be
scaled when too much accuracy has been requested for some internal step.

Arguments:
¢ ida_mem — pointer to the IDAS solver object.
* tolsfac — suggested scaling factor for user tolerances.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetErrWeights(void *ida_mem, N_Vector eweight)

The function IDAGetErriieights () returns the solution error weights at the current time. These are the W;
given by (2.5) (or by the user’s IDAEwtFn).

Arguments:
» ida_mem — pointer to the IDAS solver object.
* eweight — solution error weights at the current time.
Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
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Warning: The user must allocate space for eweight.

int IDAGetEstLocalErrors (void *ida_mem, N_Vector ele)
The function IDAGetEstLocalErrors () returns the estimated local errors.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* ele — estimated local errors at the current time.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Warning: The user must allocate space for ele. The values returned in ele are only valid if IDASolve ()
returned a non-negative value.

Note: The ele vector, togther with the eweight vector from IDAGetErrifeights (), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the RMS norm of a vector whose components are the products of the components of these two vectors.
Thus, for example, if there were recent error test failures, the components causing the failures are those with
largest values for the products, denoted loosely as eweight[i]*ele[i].

int IDAGetIntegratorStats(void *ida_mem, long int *nsteps, long int *nrevals, long int *nlinsetups, long int
*netfails, int *Kklast, int *kcur, realtype *hinused, realtype *hlast, realtype *hcur,
realtype *tcur)

The function IDAGetIntegratorStats() returns the IDAS integrator stats in one function call.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* nsteps — cumulative number of steps taken by IDAS.
e nrevals — cumulative number of calls to the user’s res functions.
* nlinsetups — cumulative number of calls made to the linear solver setup function.
* netfails — cumulative number of error test failures.
* klast — method order used on the last internal step.
¢ kcur — method order to be used on the next internal step.
* hinused — actual value of initial step size.
* hlast — step sized taken on the last internal step.
* hcur - step size to be attempted on the next internal step.
* tcur — current internal time reached.
Return value:
* IDA_SUCCESS — The optional output values have been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
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int IDAGetNumNonlinSolvIters(void *ida_mem, long int *nniters)

The function IDAGetNumNonlinSolvIters () returns the cumulative number of nonlinear iterations performed.
Arguments:

* ida_mem — pointer to the IDAS solver object.
* nniters — number of nonlinear iterations performed.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_MEM_FAIL — The SUNNonlinearSolver object is NULL.
int IDAGetNumNonlinSolvConvFails (void *ida_mem, long int *nncfails)

The function IDAGetNumNonlinSolvConvFails() returns the cumulative number of nonlinear convergence
failures that have occurred.

Arguments:

* ida_mem — pointer to the IDAS solver object.
e nncfails — number of nonlinear convergence failures.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
int IDAGetNonlinSolvStats (void *ida_mem, long int *nniters, long int *nncfails)
The function IDAGetNonlinSolvStats() returns the IDAS nonlinear solver statistics as a group.
Arguments:
* ida_mem — pointer to the IDAS solver object.
* nniters — cumulative number of nonlinear iterations performed.
e nncfails — cumulative number of nonlinear convergence failures.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_MEM_FAIL — The SUNNonlinearSolver object is NULL.
int IDAGetUserData(void *ida_mem, void **user_data)
The function IDAGetUserData returns the user data pointer provided to IDASetUserData().
Arguments:
* ida_mem — pointer to the IDAS memory block.

e user_data — memory reference to a user data pointer.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

New in version 5.3.0.
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int IDAPrintAllStats(void *ida_mem, FILE *outfile, SUNOutputFormat fmt)

The function IDAPrintAl1lStats outputs all of the integrator, nonlinear solver, linear solver, and other statistics.
Arguments:
* ida_mem — pointer to the IDAS memory block.
* outfile — pointer to output file.
* fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl,
valuel,key2,value2,...

Return value:
e IDA_SUCCESS — The output was successfully.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_ILL_INPUT - An invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

New in version 5.2.0.

char *IDAGetReturnFlagName (long int flag)
The function IDAGetReturnFlagName () returns the name of the IDAS constant corresponding to flag.

Arguments:
» flag - the flag returned by a call to an IDAS function.
Return value:

e char* — the flag name string.

Initial condition calculation optional output functions

int IDAGetNumBacktrackOps (void *ida_mem, long int *nbacktr)

The function IDAGetNumBacktrackOps () returns the number of backtrack operations done in the linesearch
algorithm in IDACalcIC(Q).

Arguments:
* ida_mem — pointer to the IDAS solver object.
e nbacktr — the cumulative number of backtrack operations.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

int IDAGetConsistentIC(void *ida_mem, N_Vector yy0_mod, N_Vector ypO_mod)
The function IDAGetConsistentIC() returns the corrected initial conditions calculated by IDACalcIC().

Arguments:
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* ida_mem — pointer to the IDAS solver object.
¢ yy®_mod — consistent solution vector.
* yp®_mod — consistent derivative vector.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_TLL_INPUT - The function was not called before the first call to IDASolve().
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:

If the consistent solution vector or consistent derivative vector is not desired, pass NULL for the correspond-
ing argument.

Warning: The user must allocate space for yy®_mod and yp®_mod (if not NULL).

Rootfinding optional output functions

There are two optional output functions associated with rootfinding.
int IDAGetRootInfo (void *ida_mem, int *rootsfound)
The function IDAGetRootInfo() returns an array showing which functions were found to have a root.
Arguments:
* ida_mem — pointer to the IDAS solver object.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root.
Fori =0,...,nrtfn — 1, rootsfound[i] # 0 if g; has a root, and = 0 if not.

Return value:
* IDA_SUCCESS — The optional output values have been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
Note that, for the components g; for which a root was found, the sign of rootsfound[i] indicates the

direction of zero-crossing. A value of +1 indicates that g; is increasing, while a value of —1 indicates a
decreasing g;.

Warning: The user must allocate memory for the vector rootsfound.

int IDAGetNumGEvals (void *ida_mem, long int *ngevals)

The function IDAGetNumGEvals () returns the cumulative number of calls to the user root function g.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* ngevals — number of calls to the user’s function g so far.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
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e IDA_MEM_NULL — The ida_mem pointer is NULL.

IDALS linear solver interface optional output functions

The following optional outputs are available from the IDALS modules:

int IDAGetJac(void *ida_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the DAE residual function.

Parameters
» ida_mem — the IDAS memory structure
* J — the Jacobian matrix
Return values
» IDALS_SUCCESS - the output value has been successfully set
e IDALS_MEM_NULL - ida_mem was NULL
o IDALS_LMEM_NULL - the linear solver interface has not been initialized

Warning: With linear solvers that overwrite the input Jacobian matrix as part of the linear solver setup (e.g.,
performing an in-place LU factorization) the matrix returned by IDAGetJac () may differ from the matrix
returned by the last Jacobian evaluation.

Warning: This function is provided for debugging purposes and the values in the returned matrix should
not be altered.

int IDAGetJacCj (void *ida_mem, sunrealtype *cj_J)
Returns the ¢; value used to compute the internally stored copy of the Jacobian matrix of the DAE residual
function.

Parameters
* ida_mem — the IDAS memory structure
* ¢j_J —the ¢; value used in the Jacobian was evaluation
Return values
» IDALS_SUCCESS - the output value has been successfully set
» IDALS_MEM_NULL - ida_mem was NULL
» IDALS_LMEM_NULL - the linear solver interface has not been initialized

int IDAGetJacTime (void *ida_mem, sunrealtype *t_J)
Returns the time at which the internally stored copy of the Jacobian matrix of the DAE residual function was
evaluated.

Parameters
» ida_mem — the IDAS memory structure
¢ t_J — the time at which the Jacobian was evaluated

Return values
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» IDALS_SUCCESS — the output value has been successfully set
e IDALS_MEM_NULL - ida_mem was NULL
e TDALS_LMEM_NULL - the linear solver interface has not been initialized

int IDAGetJacNumSteps (void *ida_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
DAE residual function was evaluated.

Parameters

e ida_mem — the IDAS memory structure

* nst_J — the value of the internal step counter at which the Jacobian was evaluated
Return values

» IDALS_SUCCESS - the output value has been successfully set

* IDALS_MEM_NULL - ida_mem was NULL

o IDALS_LMEM_NULL - the linear solver interface has not been initialized

int IDAGetLinWorkSpace (void *ida_mem, long int *lenrwLS, long int *leniwLS)

The function IDAGetLinlWorkSpace () returns the sizes of the real and integer workspaces used by the IDALS
linear solver interface.

Arguments:

* ida_mem — pointer to the IDAS solver object.

¢ lenrwLS — the number of real values in the IDALS workspace.

* leniwLS — the number of integer values in the IDALS workspace.
Return value:

» IDALS_SUCCESS - The optional output value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of IDALS is not included in this report.

Warning: The previous routines IDAD1sGetWorkspace () and IDASpilsGetWorkspace() are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

int IDAGetNumJacEvals(void *ida_mem, long int *njevals)

The function IDAGetNumJacEvals () returns the cumulative number of calls to the IDALS Jacobian approxi-
mation function.

Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ njevals — the cumulative number of calls to the Jacobian function total so far.

Return value:
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» IDALS_SUCCESS — The optional output value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Warning: The previous routine IDAD1sGetNumJacEvals () is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

int IDAGetNumLinResEvals (void *ida_mem, long int *nrevalsL.S)

The function IDAGetNumLinResEvals () returns the cumulative number of calls to the user residual function
due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approximation.

Arguments:

* ida_mem — pointer to the IDAS solver object.

* nrevalsLS — the cumulative number of calls to the user residual function.
Return value:

e IDALS_SUCCESS — The optional output value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

* IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Notes:

The value nrevalsLS is incremented only if one of the default internal difference quotient functions is
used.

Warning: The previous routines IDAD1sGetNumRhsEvals () and IDASpilsGetNumRhsEvals () are now
deprecated.

int IDAGetNumLinIters (void *ida_mem, long int *nliters)

The function IDAGetNumLinIters () returns the cumulative number of linear iterations.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* nliters — the current number of linear iterations.
Return value:

* IDALS_SUCCESS — The optional output value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Warning: The previous routine IDASpilsGetNumLinIters() is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future releases, so we recom-
mend that users transition to the new routine name soon.
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int IDAGetNumLinConvFails (void *ida_mem, long int *nlcfails)

The function IDAGetNumLinConvFails () returns the cumulative number of linear convergence failures.
Arguments:

* ida_mem — pointer to the IDAS solver object.

* nlcfails — the current number of linear convergence failures.
Return value:

e IDALS_SUCCESS — The optional output value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer is NULL.

e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Warning: The previous routine IDASpilsGetNumConvFails() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

int IDAGetNumPrecEvals (void *ida_mem, long int *npevals)

The function IDAGetNumPrecEvals() returns the cumulative number of preconditioner evaluations, i.e., the
number of calls made to psetup.

Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ npevals — the cumulative number of calls to psetup.
Return value:
» IDALS_SUCCESS — The optional output value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Warning: The previous routine IDASpilsGetNumPrecEvals() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

int IDAGetNumPrecSolves (void *ida_mem, long int *npsolves)

The function IDAGe tNumPrecSolves () returns the cumulative number of calls made to the preconditioner solve
function, psolve.

Arguments:
¢ ida_mem — pointer to the IDAS solver object.
¢ npsolves — the cumulative number of calls to psolve.
Return value:
e IDALS_SUCCESS — The optional output value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
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Warning: The previous routine IDASpilsGetNumPrecSolves() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

int IDAGetNumJTSetupEvals (void *ida_mem, long int *njtsetup)

The function IDAGetNumJTSetupEvals () returns the cumulative number of calls made to the Jacobian-vector
product setup function jtsetup.

Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ njtsetup — the current number of calls to jtsetup.
Return value:
» IDALS_SUCCESS — The optional output value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
* IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Warning: The previous routine IDASpilsGetNumJTSetupEvals() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

int IDAGetNumJtimesEvals (void *ida_mem, long int *njvevals)

The function IDAGetNumJtimesEvals () returns the cumulative number of calls made to the Jacobian-vector
product function, jtimes.

Arguments:
* ida_mem — pointer to the IDAS solver object.
¢ njvevals — the cumulative number of calls to jtimes.
Return value:
» IDALS_SUCCESS - The optional output value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Warning: The previous routine IDASpilsGetNumJtimesEvals() is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new routine name soon.

int IDAGetLastLinFlag(void *ida_mem, long int *Isflag)
The function IDAGetLastLinFlag () returns the last return value from an IDALS routine.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* 1sflag — the value of the last return flag from an IDALS function.

Return value:
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» IDALS_SUCCESS — The optional output value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

Notes:

If the IDALS setup function failed (i.e., IDASoIve () returned IDA_LSETUP_FAIL) when using the SUN-
LINSOL_DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is equal to the column in-
dex (numbered from one) at which a zero diagonal element was encountered during the LU factorization
of the (dense or banded) Jacobian matrix. If the IDALS setup function failed when using another SUN-
LinearSolver object, then 1sflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or
SUNLS_PACKAGE_FAIL_UNREC. If the IDALS solve function failed (IDASolve () returned IDA_LSOLVE_-
FAIL), 1sflag contains the error return flag from the SUNLinearSolver object, which will be one of:
SUNLS_MEM_NULL, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UN-
REC, indicating an unrecoverable failure in the J * v function; SUNLS_PSOLVE_FAIL_UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably; SUNLS_GS_FAIL, indicating a failure
in the Gram-Schmidt procedure (generated only in SPGMR or SPFGMR); SUNLS_QRSOL_FATL, indicat-
ing that the matrix R was found to be singular during the QR solve phase (SPGMR and SPFGMR only);
or SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable failure in an external iterative linear solver
package.

Warning: The previous routines IDAD1sGetLastFlag() and IDASpilsGetLastFlag() are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

char *IDAGetLinReturnFlagName (long int Isflag)
The function IDAGetLinReturnFlagName () returns the name of the IDALS constant corresponding to 1sflag.

Arguments:
e flag - the flag returned by a call to an IDAS function.
Return value:

e char* — the flag name string or if 1 < 1sflag < NN (LU factorization failed), this function returns
“NONE”.

Warning: The previous routines IDAD1sGetReturnFlagName () and IDASpilsGetReturnFlagName ()
are now wrappers for this routine, and may still be used for backward-compatibility. However, these will be
deprecated in future releases, so we recommend that users transition to the new routine name soon.

5.1.4.13 IDAS reinitialization function

The function IDAReInit () reinitializes the main IDAS solver for the solution of a new problem, where a prior call to
IDAInit() has been made. The new problem must have the same size as the previous one. IDAReInit () performs
the same input checking and initializations that IDAInit () does, but does no memory allocation, as it assumes that
the existing internal memory is sufficient for the new problem. A call to IDAReInit () deletes the solution history that
was stored internally during the previous integration. Following a successful call to IDAReInit (), call IDASolve ()
again for the solution of the new problem.

The use of IDAReInit () requires that the maximum method order, maxord, is no larger for the new problem than
for the problem specified in the last call to IDAInit (). In addition, the same N_Vector module set for the previous
problem will be reused for the new problem.
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If there are changes to the linear solver specifications, make the appropriate calls to either the linear solver objects
themselves, or to the IDALS interface routines, as described in §5.1.4.5.

If there are changes to any optional inputs, make the appropriate IDASet*** calls, as described in §5.1.4.10. Otherwise,
all solver inputs set previously remain in effect.

One important use of the IDAReInit () function is in the treating of jump discontinuities in the residual function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted DAE model, using a call to IDAReInit (). To stop when the location of the discontinuity
is known, simply make that location a value of #y,. To stop when the location of the discontinuity is determined
by the solution, use the rootfinding feature. In either case, it is critical that the residual function not incorporate the
discontinuity, but rather have a smooth extention over the discontinuity, so that the step across it (and subsequent
rootfinding, if used) can be done efficiently. Then use a switch within the residual function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted problem
uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent variable
vector.

int IDAReInit (void *ida_mem, realtype t0, N_Vector y0, N_Vector yp0)

The function IDAReInit () provides required problem specifications and reinitializes IDAS.
Arguments:
* ida_mem — pointer to the IDAS solver object.
e t0 — is the initial value of ¢.
¢ y0 — is the initial value of y.
¢ ypO — is the initial value of 7.
Return value:
e IDA_SUCCESS — The call to was successful.
e IDA_MEM_NULL — The IDAS solver object was not initialized through a previous call to IDACreate ().

e IDA_NO_MALLOC — Memory space for the IDAS solver object was not allocated through a previous call
to IDAInit().

e IDA_TILL_INPUT — An input argument to IDAReInit () has an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, IDAReInit () also sends an error message to the error handler function.

5.1.5 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function that handles error
and warning messages, (optionally) a function that provides the error weight vector, (optionally) one or two functions
that provide Jacobian-related information for the linear solver, and (optionally) one or two functions that define the
preconditioner for use in any of the Krylov iteration algorithms.
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5.1.5.1 DAE residual function

The user must provide a function of type IDAResFn defined as follows:
typedef int (*IDAResFn)(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *user_data)
This function computes the problem residual for given values of the independent variable ¢, state vector y, and
derivative g.
Arguments:
e tt —is the current value of the independent variable.
* yy — is the current value of the dependent variable vector, y(t).
* yp — is the current value of g(t).

o rr —is the output residual vector F'(t,y, 7).

* user_data —is a pointer to user data, the same as the user_data pointer parameter passed to IDASe-
tUserData().

Return value:
An IDAResFn function type should return a value of 0 if successful, a positive value if a recoverable error
occurred (e.g., yy has an illegal value), or a negative value if a nonrecoverable error occurred. In the last
case, the integrator halts. If a recoverable error occurred, the integrator will attempt to correct and retry.

Notes:
A recoverable failure error return from the IDAResFn is typically used to flag a value of the dependent
variable y that is “illegal” in some way (e.g., negative where only a non-negative value is physically mean-
ingful). If such a return is made, IDAS will attempt to recover (possibly repeating the nonlinear solve, or
reducing the step size) in order to avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solution of the nonlinear
solver. Therefore, in general, a recoverable error in that converged value cannot be corrected. (It may be
detected when the residual function is called the first time during the following integration step, but a
successful step cannot be undone.)

However, if the user program also includes quadrature integration, the state variables can be checked for
legality in the call to IDAQuadRhsFn, which is called at the converged solution of the nonlinear system,
and therefore IDAS can be flagged to attempt to recover from such a situation. Also, if sensitivity analysis
is performed with the staggered method, the DAE residual function is called at the converged solution of
the nonlinear system, and a recoverable error at that point can be flagged, and IDAS will then try to correct
it.

5.1.5.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
IDASetErrFile()), the user may provide a function of type IDAErrHandlerFn to process any such messages. The
function type IDAErrHandlerFn is defined as follows:

typedef void (*IDAErrHandlerFn)(int error_code, const char *module, const char *function, char *msg, void
*user_data)

This function processes error and warning messages from IDAS and its sub-modules.
Arguments:

* error_code — is the error code.

* module — is the name of the IDAS module reporting the error.

e function — is the name of the function in which the error occurred.
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* eH_data — is a pointer to user data, the same as the eh_data parameter passed to IDASetErrHan-
dlerFn().

Return value:
This function has no return value.

Notes:
error_code is negative for errors and positive (IDA_WARNING) for warnings. If a function that returns a
pointer to memory encounters an error, it sets error_code to 0.

5.1.5.3 Error weight function

typedef int (*IDAEwWtFn)(N_Vector y, N_Vector ewt, void *user_data)
This function computes the WRMS error weights for the vector y.

Arguments:
* y —is the value of the dependent variable vector at which the weight vector is to be computed.
* ewt — is the output vector containing the error weights.

e user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
» 0 - if it the error weights were successfully set.
e -1 —if any error occured.

Notes:
Allocation of memory for ewt is handled within IDAS.

Warning: The error weight vector must have all components positive. It is the user’s responsiblity to
perform this test and return -1 if it is not satisfied.

5.1.5.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must supply a function of
type IDARootFn, defined as follows:

typedef int (*IDARootFn)(realtype t, N_Vector 'y, N_Vector yp, realtype *gout, void *user_data)

This function computes a vector-valued function g(¢, y, ¢) such that the roots of the nrtfn components g;(¢, y, ¥)
are to be found during the integration.

Arguments:
* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* yp — is the current value of g(t), the ¢ — derivative of y.
* gout — is the output array, of length nrtfn, with components g;(¢, y, ).

* user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().
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Return value:
0 if successful or non-zero if an error occured (in which case the integration is halted and IDASoIve ()
returns IDA_RTFUNC_FAIL).

Notes:
Allocation of memory for gout is handled within IDAS.

5.1.5.5 Jacobian construction (matrix-based linear solvers)
If a matrix-based linear solver module is used (i.e. a non-NULL SUNMatrix object was supplied to IDASetLinear-
Solver()), the user may provide a function of type IDALsJacFn defined as follows:

typedef int (*IDALsJacFn)(realtype t, realtype c_j, N_Vector y, N_Vector yp, N_Vector r, SUNMatrix Jac, void
*user_data, N_Vector tmpl, N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix .J of the DAE system (or an approximation to it), defined by (2.7).
Arguments:

e tt —is the current value of the independent variable ¢.

* cj —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).

* yy — is the current value of the dependent variable vector, y(t).

* yp —is the current value of (t).

e rr —is the current value of the residual vector F'(¢,y, 9).

oF OF
* Jac —is the output (approximate) Jacobian matrix (of type SUNMatrix), J = " +cj 90
Y Y
* user_data - is a pointer to user data, the same as the user_data parameter passed to IDASetUser-

Data().

e tmpl, tmp2, and tmp3 — are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacFn () function as temporary storage or work space.

Return value:
An IDALsJacFn should return 0 if successful, a positive value if a recoverable error occurred, or a negative
value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing the stepsize, and
hence changing « in (2.7).

Notes:
Information regarding the structure of the specific SUNMatrix structure (e.g., number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see Chapter §7 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(t,y,7) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need
to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the user’s IDALs-
JacFn() function is preceded by a call to the IDAResFn () user function with the same (¢, y, ) arguments.
Thus the Jacobian function can use any auxiliary data that is computed and saved during the evaluation of
the DAE residual. In the case of a user-supplied or external nonlinear solver, this is also true if the residual
function is evaluated prior to calling the linear solver setup function (see §9.1.4 for more information).

If the user’s IDALsJacFn function uses difference quotient approximations, it may need to access quantities
not in the call list. These quantities may include the current stepsize, the error weights, etc. To obtain these,
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the user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions described
in §5.1.4.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the Neq x Neq dense matrix Jac with an approximation
to the Jacobian matrix J(¢,y,y) at the point (tt, yy, yp). The accessor macros SM_ELEMENT_D and SM_-
COLUMN_D allow the user to read and write dense matrix elements without making explicit references to the
underlying representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i,
j)-th element of the dense matrix Jac (with i, j=0...N— 1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m and n ranging from 1
to N, the Jacobian element J,, ,, can be set using the statement SM_ELEMENT_D(J, m-1, n-1) =J,, ;.
Alternatively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th column of Jac (with
j=0...N — 1), and the elements of the j-th column can then be accessed using ordinary array indexing.
Consequently, J,, ,, can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1]
= Jyn n. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that
both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor
macros are documented in §7.3.

banded:

A user-supplied banded Jacobian function must load the Neq x Neq banded matrix Jac with an approxima-
tion to the Jacobian matrix J (¢, y, ¢) at the point (tt, yy, yp). The accessor macros SM_ELEMENT_B, SM_-
COLUMN_B, and SM_COLUMN_ELEMENT_B allow the user to read and write banded matrix elements without
making specific references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_-
B(J, i, j) references the (i, j)-th element of the banded matrix Jac, counting from 0. This macro is
meant for use in small problems for which efficiency of access is not a major concern. Thus, in terms of
the indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and mlower,
the Jacobian element J,, ,, can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = J,, ;.
The elements within the band are those with -mupper < m-n < mlower. Alternatively, SM_COLUMN_B(J,
j) returns a pointer to the diagonal element of the j-th column of Jac, and if we assign this address to
realtype *col_j, then the i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_-
j, i, 3D, counting from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col_n =
SM_COLUMN_B(J, n-1); and SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = J,, ,. The elements of
the j-th column can also be accessed via ordinary array indexing, but this approach requires knowledge of
the underlying storage for a band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from
—mupper to mlower. For large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_EL-
EMENT_B than to use the SM_ELEMENT_B macro. As in the dense case, these macros all number rows and
columns starting from 0. The SUNMATRIX_BAND type and accessor macros are documented in §7.6.

sparse:

A user-supplied sparse Jacobian function must load the Neq x Neq compressed-sparse-column or
compressed-sparse-row matrix Jac with an approximation to the Jacobian matrix J(¢,y, ) at the point
(tt, yy, yp). Storage for Jac already exists on entry to this function, although the user should ensure that
sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient
the user may reallocate the data and index arrays as needed. The amount of allocated space in a SUNMA-
TRIX_SPARSE object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ.
The SUNMATRIX_SPARSE type and accessor macros are documented in §7.8.

Warning: The previous function type IDAD1sJacFn() is identical to IDALsJacFn (), and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new function type name soon.
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5.1.5.6 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMatrix was supplied to IDASetLinearSolver()),
the user may provide a function of type IDALsJacTimesVecFn in the following form, to compute matrix-vector prod-
ucts Jv. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*IDALsJacTimesVecFn)(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, N_Vector v, N_Vector Jv,
realtype cj, void *user_data, N_Vector tmpl, N_Vector tmp2)

This function computes the product Jv of the DAE system Jacobian J (or an approximation to it) and a given
vector v, where J is defined by (2.7).

Arguments:

tt — is the current value of the independent variable.

yy — is the current value of the dependent variable vector, y(t).

yp — is the current value of ¢(t).

rr —is the current value of the residual vector F'(¢,y, ).

v — is the vector by which the Jacobian must be multiplied to the right.

Jv —is the computed output vector.

cj —1is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).

user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

tmp1 and tmp2 — are pointers to memory allocated for variables of type N_Vector which can be used
by IDALsJacTimesVecFn as temporary storage or work space.

Return value:
The value returned by the Jacobian-times-vector function should be 0 if successful. A nonzero value indi-
cates that a nonrecoverable error occurred.

Notes:

This function must return a value of Jv that uses an approximation to the current value of J, i.e. as
evaluated at the current (¢,y,9).

If the user’s IDALsJacTimesVecFn () function uses difference quotient approximations, it may need to
access quantities not in the call list. These include the current stepsize, the error weights, etc. To obtain
these, the user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions
described in §5.1.4.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_-
types.h.

Warning: The previous function type IDASpilsJacTimesVecFn() is identical to IDALsJac-
TimesVecFn (), and may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.
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5.1.5.7 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-vector product function requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type IDALsJacTimesSetupFn, defined as follows:

typedef int (*IDALsJacTimesSetupFn)(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, ealtype cj, void
*user_data);

This function setups any data needed by Jv product function (see IDALsJacTimesVecFn).
Arguments:
e tt —is the current value of the independent variable.
* yy — is the current value of the dependent variable vector, y(t).
* yp — is the current value of y(t).
* rr —is the current value of the residual vector F'(¢,y, 3).
* cj —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).

* user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
The value returned by the Jacobian-vector setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
Each call to the Jacobian-vector product setup function is preceded by a call to the IDAResFn user function
with the same (¢, y, ) arguments. Thus, the setup function can use any auxiliary data that is computed and
saved during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current stepsize, the error weights, etc. To obtain these, the
user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions described
in §5.1.4.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

Warning: The previous function type IDASpilsJacTimesSetupFn() is identical to IDALsJacTimes-
SetupFn(), and may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

5.1.5.8 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver solver module, then the user must provide
a function to solve the linear system Pz = r where P is a left preconditioner matrix which approximates (at least
crudely) the Jacobian matrix J = 9F /dy + ¢j OF /3. This function must be of type IDALsPrecSolveFn, defined
as follows:

typedef int (*IDALsPrecSolveFn)(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, N_Vector rvec, N_Vector
zvec, realtype cj, realtype delta, void *user_data)

This function solves the preconditioning system Pz = r.
Arguments:
e tt —is the current value of the independent variable.

* yy —is the current value of the dependent variable vector, y(t).
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* yp — is the current value of y(t).

* rr —is the current value of the residual vector F'(¢,y, 9).

* rvec —is the right-hand side vector r of the linear system to be solved.

* zvec — is the computed output vector.

e cj —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).

* delta—is an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector Res = r — Pz of the system should be made less than delta in weighted /5 norm,
ie., \/Zi(Resi - ewt;)? < delta. To obtain the N_Vector ewt, call ITDAGetErrifeights().

* user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
The value returned by the preconditioner solve function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

5.1.5.9 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then this needs to be

done in a user-supplied function of type IDALsPrecSetupFn, defined as follows:

typedef int (*IDALsPrecSetupFn)(realtype tt, N_Vector yy, N_Vector yp, N_Vector rt, realtype cj, void *user_data)
This function solves the preconditioning system Pz = r.

Arguments:
e tt —is the current value of the independent variable.
* yy —is the current value of the dependent variable vector, y(t).
* yp — is the current value of y(¢).
* rr — is the current value of the residual vector F'(¢,y, 9).
* cj —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).

* user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
The value returned by the preconditioner setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the IDAResFn user function with the same (¢,y, ) arguments.
Thus the preconditioner setup function can use any auxiliary data that is computed and saved during the
evaluation of the DAE residual. In the case of a user-supplied or external nonlinear solver, this is also true
if the residual function is evaluated prior to calling the linear solver setup function (see §9.1.4 for more
information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the nonlinear solver.

If the user’s IDALsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current stepsize, the error weights, etc. To obtain these, the
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user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions described
in §5.1.4.12. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

5.2 Integration of pure quadrature equations

IDAS allows the DAE system to include pure quadratures. In this case, it is more efficient to treat the quadratures
separately by excluding them from the nonlinear solution stage. To do this, begin by excluding the quadrature variables
from the vectors yy and yp and the quadrature equations from within res. Thus a separate vector yQ of quadrature
variables is to satisfy (d/dt)yQ = fo(t, v, 9).

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton program presented in §5.1.3 are grayed out and new or modified steps are in bold.

1.

A T o

—_ = = = =
Eal e

Set vector of initial values for quadrature variables
Typically, the quadrature variables should be initialized to 0.
15. Initialize quadrature integration

Call IDAQuadInit () to specify the quadrature equation right-hand side function and to allocate internal memory
related to quadrature integration. See §5.2.1 for details.

16. Set optional inputs for quadrature integration

Call IDASetQuadErrCon () to indicate whether or not quadrature variables shoule be used in the step size control
mechanism, and to specify the integration tolerances for quadrature variables. See §5.2.4 for details.

17.
18.
19.
20.
21. Extract quadrature variables
Call IDAGetQuad () to obtain the values of the quadrature variables at the current time.

22.
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23. Get quadrature optional outputs

Call IDAGetQuad** functions to obtain optional output related to the integration of quadratures. See §5.2.5 for
details.

24,
25.

5.2.1 Quadrature initialization and deallocation functions
The function IDAQuadInit () activates integration of quadrature equations and allocates internal memory related to
these calculations. The form of the call to this function is as follows:

int IDAQuadInit (void *ida_mem, /DAQuadRhsFn thsQ, N_Vector yQO0)

The function IDAQuadInit () provides required problem specifications, allocates internal memory, and initial-
izes quadrature integration.

Arguments:
* ida_mem — pointer to the IDAS memory block returned by IDACreate ().

* rhsQ - is the C function which computes fq , the right-hand side of the quadrature equations. This
function has the form £(Qt, yy, yp, rhsQ, user_data) for full details see §5.2.6.

* yQO — is the initial value of yq.
Return value:
e TIDA_SUCCESS — The call to IDAQuadInit () was successful.
e IDA_MEM_NULL — The IDAS memory was not initialized by a prior call to IDACreate().
e IDA_MEM_FAIL — A memory allocation request failed.
Notes:
If an error occurred, IDAQuadInit () also sends an error message to the error handler function.

In terms of the number of quadrature variables, N, and maximum method order, maxord, the size of the real and
integer workspaces are increased by (maxord + 5)N,. If IDAQuadSVtolerances() is called, the workspaces
are further increased by N,.

The function IDAQuadReInit (), useful during the solution of a sequence of problems of same size, reinitializes the
quadrature-related internal memory and must follow a call to IDAQuadInit () (and maybe a call to IDAReInit()).
The number N, of quadratures is assumed to be unchanged from the prior call to IDAQuadInit(). The call to the
IDAQuadReInit () function has the following form:

int IDAQuadReInit (void *ida_mem, N_Vector yQO0)

The function IDAQuadReInit () provides required problem specifications and reinitializes the quadrature inte-
gration.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* yQO — is the initial value of yq.
Return value:
e TDA_SUCCESS — The call to IDAReInit () was successful.
e IDA_MEM_NULL — The IDAS memory was not initialized by a prior call to IDACreate().
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* IDA_NO_QUAD — Memory space for the quadrature integration was not allocated by a prior call to
IDAQuadInit().

Notes:
If an error occurred, IDAQuadReInit () also sends an error message to the error handler function.

void IDAQuadFree (void *ida_mem)

The function IDAQuadFree () frees the memory allocated for quadrature integration.
Arguments:

* ida_mem — pointer to the IDAS memory block.

Return value:
¢ The function has no return value.

Notes:
In general, IDAQuadFree () need not be called by the user as it is invoked automatically by IDAFree().

5.2.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve() is exactly the same.
However, in this case the return value flag can also be one of the following:

* IDA_QRHS_FAIL — The quadrature right-hand side function failed in an unrecoverable manner.
e IDA_FIRST_QRHS_ERR — The quadrature right-hand side function failed at the first call.

* IDA_REP_QRHS_ERR — Convergence test failures occurred too many times due to repeated recoverable errors
in the quadrature right-hand side function. This value will also be returned if the quadrature right-hand side
function had repeated recoverable errors during the estimation of an initial step size (assuming the quadrature
variables are included in the error tests).

5.2.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to IDAQuadInit(), or reinitialized by a call to
IDAQuadReInit (), then IDAS computes both a solution and quadratures at time t. However, IDASoIve () will still
return only the solution y in y. Solution quadratures can be obtained using the following function:

int IDAGetQuad(void *ida_mem, realtype tret, N_Vector yQ)

The function IDAGetQuad () returns the quadrature solution vector after a successful return from IDASoIve ().
Arguments:

* ida_mem — pointer to the memory previously allocated by IDAInit ().

* tret — the time reached by the solver output.

¢ yQ — the computed quadrature vector.
Return value:

e TDA_SUCCESS — IDAGetQuad () was successful.

e IDA_MEM_NULL - ida_mem was NULL.

* IDA_NO_QUAD - Quadrature integration was not initialized.

* IDA_BAD_DKY - yQis NULL.
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The function IDAGetQuadDky () computes the k-th derivatives of the interpolating polynomials for the quadrature vari-
ables at time t. This function is called by IDAGetQuad () withk = 0 and with the current time at which IDASoIve ()
has returned, but may also be called directly by the user.

int IDAGetQuadDky (void *ida_mem, realtype t, int k, N_Vector dkyQ)

The function IDAGetQuadDky () returns derivatives of the quadrature solution vector after a successful return
from IDA.

Arguments:
* ida_mem — pointer to the memory previously allocated by IDAInit ().

e t — the time at which quadrature information is requested. The time t must fall within the interval
defined by the last successful step taken by IDAS.

* k — order of the requested derivative. This must be < klast.

» dkyQ — the vector containing the derivative. This vector must be allocated by the user.
Return value:

e IDA_SUCCESS — IDAGetQuadDky () succeeded.

e IDA_MEM_NULL — The pointer to ida_mem was NULL.

e IDA_NO_QUAD — Quadrature integration was not initialized.

e IDA_BAD_DKY — The vector dkyQ is NULL.

e IDA_BAD_K —k is not in the range 0, 1, ..., klast.

e IDA_BAD_T — The time t is not in the allowed range.

Notes:
In case of an error return, an error message is also sent to the error handler function.

5.2.4 Optional inputs for quadrature integration

IDAS provides the following optional input functions to control the integration of quadrature equations.

int IDASetQuadErrCon(void *ida_mem, booleantype errconQ)

The function IDASetQuadErrCon() specifies whether or not the quadrature variables are to be used in the
step size control mechanism within IDAS. If they are, the user must call either IDAQuadSStolerances() or
IDAQuadSVtolerances () to specify the integration tolerances for the quadrature variables.

Arguments:
¢ ida_mem — pointer to the IDAS memory block.

» errconQ — specifies whether quadrature variables are included SUNTRUE or not SUNFALSE in the error
control mechanism.

Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_QUAD — Quadrature integration has not been initialized.

Notes:
By default, errconQ is set to SUNFALSE.
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Warning: It is illegal to call IDASetQuadErrCon() before a call to IDAQuadInit ().

If the quadrature variables are part of the step size control mechanism, one of the following functions must be called
to specify the integration tolerances for quadrature variables.

int IDAQuadSStolerances (void *ida_mem, realtype reltolQ, realtype abstolQ)

The function IDAQuadSStolerances () specifies scalar relative and absolute tolerances.
Arguments:

¢ ida_mem — pointer to the IDAS memory block.

e reltolQ — tolerances is the scalar relative error tolerance.

¢ abstolQ - is the scalar absolute error tolerance.
Return value:

* IDA_SUCCESS — The optional value has been successfully set.

e IDA_NO_QUAD — Quadrature integration was not initialized.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_ILL_INPUT - One of the input tolerances was negative.

int IDAQuadSVtolerances (void *ida_mem, realtype reltolQ, N_Vector abstolQ)

The function IDAQuadSVtolerances () specifies scalar relative and vector absolute tolerances.
Arguments:

* ida_mem — pointer to the IDAS memory block.

e reltolQ — tolerances is the scalar relative error tolerance.

¢ abstolQ — is the vector absolute error tolerance.
Return value:

* IDA_SUCCESS — The optional value has been successfully set.

¢ IDA_NO_QUAD — Quadrature integration was not initialized.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT - One of the input tolerances was negative.

5.2.5 Optional outputs for quadrature integration

IDAS provides the following functions that can be used to obtain solver performance information related to quadrature
integration.

int IDAGetQuadNumRhsEvals (void *ida_mem, long int *nrhsQevals)

The function IDAGetQuadNumRhsEvals () returns the number of calls made to the user’s quadrature right-hand
side function.

Arguments:
* ida_mem — pointer to the IDAS memory block.
¢ nrhsQevals — number of calls made to the user’s rhsQ function.

Return value:
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* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_NO_QUAD — Quadrature integration has not been initialized.
int IDAGetQuadNumErrTestFails (void *ida_mem, long int *nQetfails)

The function IDAGetQuadNumErrTestFails () returns the number of local error test failures due to quadrature
variables.

Arguments:

* ida_mem — pointer to the IDAS memory block.

* nQetfails — number of error test failures due to quadrature variables.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_QUAD — Quadrature integration has not been initialized.
int IDAGetQuadErrWeights (void *ida_mem, N_Vecror eQweight)
The function IDAGetQuadErrifeights () returns the quadrature error weights at the current time.
Arguments:
* ida_mem — pointer to the IDAS memory block.
* eQweight — quadrature error weights at the current time.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_NO_QUAD — Quadrature integration has not been initialized.

Warning: The user must allocate memory for eQweight. If quadratures were not included in the error

control mechanism (through a call to IDASetQuadErrCon() with errconQ = SUNTRUE), IDAGetQuadEr-
riieights () does not set the eQweight vector.

int IDAGetQuadStats (void *ida_mem, long int *nrhsQevals, long int *nQetfails)
The function IDAGetQuadStats () returns the IDAS integrator statistics as a group.

Arguments:
* ida_mem — pointer to the IDAS memory block.
¢ nrhsQevals — number of calls to the user’s rhsQ function.
* nQetfails — number of error test failures due to quadrature variables.
Return value:
e IDA_SUCCESS - the optional output values have been successfully set.
e IDA_MEM_NULL — the ida_mem pointer is NULL.

e IDA_NO_QUAD — Quadrature integration has not been initialized.
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5.2.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand side of the quadra-
ture equations (in other words, the integrand function of the integral that must be evaluated). This function must be of
type IDAQuadRhsFn () defined as follows:

typedef int (*IDAQuadRhsFn)(realtype tres, N_Vector yy, N_Vector yp, N_Vector rrQ, void *user_data)

This function computes the quadrature equation right-hand side for a given value of the independent variable ¢
and state vectors y and y.

Arguments:
* t —is the current value of the independent variable.
* yy — is the current value of the dependent variable vector, y(t) .
* yp —is the current value of the dependent variable derivative vector, ¢(t) .
* rrQ - is the output vector fo(t,y,7) .
* user_data —is the user_data pointer passed to IDASetUserData() .
Return value:

A IDAQuadRhsFn () should return 0 if successful, a positive value if a recoverable error occurred (in which case
IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration is halted
and IDA_QRHS_FAIL is returned).

Notes:
Allocation of memory for rhsQ is automatically handled within IDAS.

Both y and rhsQ are of type N_Vector, but they typically have different internal representations. It is the user’s
responsibility to access the vector data consistently.

There is one situation in which recovery is not possible even if IDAQuadRhsFn () function returns a recoverable
error flag. This is when this occurs at the very first call to the IDAQuadRhsFn () (in which case IDAS returns
IDA_FIRST_QRHS_ERR).

5.3 Preconditioner modules

A principal reason for using a parallel DAE solver such as IDAS lies in the solution of partial differential equations
(PDEs). Moreover, the use of a Krylov iterative method for the solution of many such problems is motivated by the
nature of the underlying linear system of equations (2.6) that must be solved at each time step. The linear algebraic
system is large, sparse, and structured. However, if a Krylov iterative method is to be effective in this setting, then a
nontrivial preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative method is usually
unacceptably slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It
has been successfully used for several realistic, large-scale problems [40] and is included in a software module within
the IDAS package. This module works with the parallel vector module NVECTOR_PARALLEL and generates a pre-
conditioner that is a block-diagonal matrix with each block being a band matrix. The blocks need not have the same
number of super- and sub-diagonals, and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called IDABBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE problem as being sub-
divided into M non-overlapping sub-domains. Each of these sub-domains is then assigned to one of the M processors
to be used to solve the DAE system. The basic idea is to isolate the preconditioning so that it is local to each proces-
sor, and also to use a (possibly cheaper) approximate residual function. This requires the definition of a new function
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G(t,y, y) which approximates the function F'(¢,y, ¢) in the definition of the DAE system (2.1). However, the user may
set G = F. Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and 3 into
M disjoint blocks ¥,,, and ¥,,, and a decomposition of G into blocks G,,,. The block G,,, depends on y,,, and ¥,,,, and
also on components of y,,,» and ¥,,,» associated with neighboring sub-domains (so-called ghost-cell data). Let ¥,,, and
¥ denote 1, and 7,,, (respectively) augmented with those other components on which G,,, depends. Then we have

G(t7y’y) = [Gl(t7g17:§1)7G2(t7g2a§2)7 .- ',GM(tngagM)}T )

and each of the blocks Gy, (t, Jm, Um ) is uncoupled from the others.

The preconditioner associated with this decomposition has the form

P,
Py
P =
Py
where
0G, 0G,
P,~ —4+a———

OYm OYm

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and m1dq defined as the number of non-
zero diagonals above and below the main diagonal, respectively. The difference quotient approximation is computed
using mudq + mldq +2 evaluations of G, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of G, if smaller values
provide a more efficient preconditioner. Such an efficiency gain may occur if the couplings in the DAE system outside
a certain bandwidth are considerably weaker than those within the band. Reducing mukeep and mlkeep while keeping
mudqg and mldq at their true values, discards the elements outside the narrower band. Reducing both pairs has the
additional effect of lumping the outer Jacobian elements into the computed elements within the band, and requires
more caution and experimentation.

The solution of the complete linear system
Pxr=1»
reduces to solving each of the equations
Prxym =bn

and this is done by banded LU factorization of P, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatment of the blocks P,,. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

5.3.1 A parallel band-block-diagonal preconditioner module

The IDABBDPRE module calls two user-provided functions to construct P: a required function Gres (of type ID-
ABBDLocalFn) which approximates the residual function G(t,y,y) ~ F(t,y,y) and which is computed locally, and
an optional function Gcomm (of type IDABBDCommFn) which performs all inter-process communication necessary to
evaluate the approximate residual GG. These are in addition to the user-supplied residual function res. Both functions
take as input the same pointer user_data as passed by the user to IDASetUserData () and passed to the user’s func-
tion res. The user is responsible for providing space (presumably within user_data) for components of yy and yp
that are communicated by Gcomm from the other processors, and that are then used by Gres, which should not do any
communication.
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typedef int (*IDABBDLocalFn)(sunindextype Nlocal, realtype tt, N_Vector yy, N_Vector yp, N_Vector gval, void
*user_data)

This Gres function computes G(¢,y,y). It loads the vector gval as a function of tt, yy, and yp.
Arguments:

* Nlocal —is the local vector length.

* tt —is the value of the independent variable.

* yy —is the dependent variable.

* yp —is the derivative of the dependent variable.

» gval —is the output vector.

* user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:

An IDABBDLocalFn function type should return O to indicate success, 1 for a recoverable error, or -1 for a
non-recoverable error.

Notes:

This function must assume that all inter-processor communication of data needed to calculate gval has already
been done, and this data is accessible within user_data.

The case where G is mathematically identical to F' is allowed.

typedef int (*IDABBDCommFn)(sunindextype Nlocal, realtype tt, N_Vector yy, N_Vector yp, void *user_data)

This Gcomm function performs all inter-processor communications necessary for the execution of the Gres func-
tion above, using the input vectors yy and yp.

Arguments:
* Nlocal —is the local vector length.
e tt —is the value of the independent variable.
 yy —is the dependent variable.
* yp —is the derivative of the dependent variable.
* gval —is the output vector.

e user_data —is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
An IDABBDCommFn function type should return O to indicate success, 1 for a recoverable error, or -1 for a
non-recoverable error.

Notes:
The Gcomm function is expected to save communicated data in space defined within the structure user_data.

Each call to the Gcomm function is preceded by a call to the residual function res with the same (¢, y, ¢) argu-
ments. Thus Gcomm can omit any communications done by res if relevant to the evaluation of Gres. If all nec-
essary communication was done in res, then Gcomm = NULL can be passed in the call to ITDABBDPrecInit().

Besides the header files required for the integration of the DAE problem (see §5.1.2), to use the IDABBDPRE module,
the main program must include the header file ida_bbdpre.h which declares the needed function prototypes.
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The following is a summary of the usage of this module and describes the sequence of calls in the user main program.
Steps that are unchanged from the user main program presented in §5.1.3 are grayed out and new or modified steps are
in bold.

1.
2
3.
4. Create linear solver object

When creating the iterative linear solver object, specify the use of left preconditioning (SUN_PREC_LEFT) as
IDAS only supports left preconditioning.

¥ ® _Naow

10. Set linear solver optional inputs

Warning: The user should not overwrite the preconditioner setup function or solve function through calls
to IDASetPreconditioner () optional input function.

11. Initialize the IDABBDPRE preconditioner module

Call IDABBDPrecInit() to allocate memory and initialize the internal preconditioner data. The last two argu-
ments of IDABBDPrecInit () are the two user-supplied functions described above.

12.
13.
14.
15.
16.
17. Get optional outputs

Additional optional outputs associated with IDABBDPRE are available by way of two routines described below,
IDABBDPrecGetiorkSpace () and IDABBDPrecGetNumGfnEvals().

18.
19.
The user-callable functions that initialize or re-initialize the IDABBDPRE preconditioner module are described next.

int IDABBDPrecInit (void *ida_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq, sunindextype
mukeep, sunindextype mlkeep, realtype dq_rel_yy, IDABBDLocalFn Gres, IDABBDCommFn
Gcomm) ;

The function IDABBDPrecInit() initializes and allocates (internal) memory for the IDABBDPRE precondi-
tioner.

Arguments:

* ida_mem — pointer to the IDAS solver object.
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* Nlocal — local vector dimension.

* mudg — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.
* mldq - lower half-bandwidth to be used in the difference-quotient Jacobian approximation.
» mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.

* mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

* dg_rel_yy —therelative increment in components of y used in the difference quotient approximations.
The default is dg_rel_yy = +/unit roundoff , which can be specified by passing dq_rel_yy = 0.0.

* Gres — the function which computes the local residual approximation G(t, y, y).

* Gcomm — the optional function which performs all inter-process communication required for the com-
putation of G(t,y, ).

Return value:
* IDALS_SUCCESS — The call was successful.
e IDALS_MEM_NULL — The ida_mem pointer was NULL.
* IDALS_MEM_FAIL — A memory allocation request has failed.
e IDALS_LMEM_NULL — An IDALS linear solver memory was not attached.

e IDALS_ILL_INPUT — The supplied vector implementation was not compatible with the block band
preconditioner.

Notes:

If one of the half-bandwidths mudq or mldq to be used in the difference-quotient calculation of the approximate
Jacobian is negative or exceeds the value Nlocal-1, it is replaced by O or Nlocal-1 accordingly.

The half-bandwidths mudq and m1dg need not be the true half-bandwidths of the Jacobian of the local block of
G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The IDABBDPRE module also provides a reinitialization function to allow for a sequence of problems of the same size,
with the same linear solver choice, provided there is no change in local_N, mukeep, or mlkeep. After solving one prob-
lem, and after calling IDAReInit () to re-initialize IDAS for a subsequent problem, a call to IDABBDPrecReInit ()
can be made to change any of the following: the half-bandwidths mudq and m1dq used in the difference-quotient Jaco-
bian approximations, the relative increment dq_rel_yy, or one of the user-supplied functions Gres and Gcomm. If there
is a change in any of the linear solver inputs, an additional call to the “Set’routines provided by the SUNLinearSolver
object, and/or one or more of the corresponding IDASet*** functions, must also be made (in the proper order).

int IDABBDPrecReInit (void *ida_mem, sunindextype mudq, sunindextype mldq, realtype dq_rel_yy)
The function IDABBDPrecReInit () reinitializes the IDABBDPRE preconditioner.

Arguments:
* ida_mem — pointer to the IDAS solver object.
* mudg — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.
¢ Mldq - lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

e dg_rel_yy—therelative increment in components of y used in the difference quotient approximations.
The default is dg_rel_yy = +/unit roundoff , which can be specified by passing dq_rel_yy = 0.0.

Return value:

136 Chapter 5. Using IDAS



User Documentation for IDAS, v5.5.1

IDALS_SUCCESS — The call was successful.

IDALS_MEM_NULL — The ida_mem pointer was NULL.

IDALS_LMEM_NULL — An IDALS linear solver memory was not attached.

IDALS_PMEM_NULL — The function IDABBDPrecInit () was not previously called.

Notes:
If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal - 1, itis replaced by
O or Nlocal - 1, accordingly.

The following two optional output functions are available for use with the IDABBDPRE module:

int IDABBDPrecGetWorkSpace (void *ida_mem, long int *lenrwBBDP, long int *leniwBBDP)

The function IDABBDPrecGetliorkSpace() returns the local sizes of the IDABBDPRE real and integer
workspaces.

Arguments:

* ida_mem — pointer to the IDAS solver object.

* lenrwBBDP — local number of real values in the IDABBDPRE workspace.

* 1eniwBBDP — local number of integer values in the IDABBDPRE workspace.
Return value:

e IDALS_SUCCESS — The optional output value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer was NULL.

e IDALS_PMEM_NULL — The IDABBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the ID-
ABBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary vec-
tors). These values are local to each process. The workspaces referred to here exist in addition to those
given by the corresponding function IDAGetLinlWorkSpace ().

int IDABBDPrecGetNumGfnEvals (void *ida_mem, long int *ngevalsBBDP)

The function IDABBDPrecGetNumGfnEvals () returns the cumulative number of calls to the user Gres function
due to the finite difference approximation of the Jacobian blocks used within IDABBDPRE’s preconditioner setup
function.

Arguments:

* ida_mem — pointer to the IDAS solver object.

* ngeval sBBDP — the cumulative number of calls to the user Gres function.
Return value:

» IDALS_SUCCESS — The optional output value has been successfully set.

e IDALS_MEM_NULL — The ida_mem pointer was NULL.

e IDALS_PMEM_NULL — The IDABBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP evaluations of Gres, the costs associated with IDABBDPRE also includes nlin-
setups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and nrevalsLS residual
function evaluations, where nlinsetups is an optional IDAS output (see §5.1.4.12), and npsolves and nrevalsLS
are linear solver optional outputs (see §5.1.4.12).
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5.4 Using IDAS for Forward Sensitivity Analysis

This chapter describes the use of IDAS to compute solution sensitivities using forward sensitivity analysis. One of our
main guiding principles was to design the IDAS user interface for forward sensitivity analysis as an extension of that
for IVP integration. Assuming a user main program and user-defined support routines for IVP integration have already
been defined, in order to perform forward sensitivity analysis the user only has to insert a few more calls into the main
program and (optionally) define an additional routine which computes the residual of the sensitivity systems (2.11).
The only departure from this philosophy is due to the IDAResFn type definition. Without changing the definition of
this type, the only way to pass values of the problem parameters to the ODE residual function is to require the user data
structure £_data to contain a pointer to the array of real parameters p.

IDAS uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in §12.

‘We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of the
interface to the various user-callable routines and of the user-supplied routines that were not already described in §5.1
or §5.2.

5.4.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of IDAS. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of the details
to the later sections. As in §5.1.3, most steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, §9 for the specific
name of the function to be called or macro to be referenced.

First, note that no additional header files need be included for forward sensitivity analysis beyond those for IVP solution
§5.1.3.

Steps that are unchanged from the user main program skeleton in §5.1.3 are grayed out and new or modified steps are
in bold.

1.

© ® N A » N

—_— =
D

13.
14. Initialize quadrature integration

If the quadrature is not sensitivity-dependent, initialize the quadrature integration as described in §5.2. For
integrating a problem where the quadrature depends on the forward sensitivities see §5.4.4.
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15. Set the sensitivity initial values

Call N_VCloneVectorArray() to create N_Vector arrays ySO and ypSO to hold the initial values for the sen-
sitivity vectors of y and sensitivity derivative vectors of y, respectively.

ySO® N_VCloneVectorArray(Ns, y0);
ypSO® = N_VCloneVectorArray(Ns, y0);

where Ns is the number of parameters with respect to which sensitivities are to be computed and y® serves only
to provide an N_Vector template for cloning.

Then, load initial values for each sensitivity vector yS®[i] and sensitivity derivative vector ypS®[i] for i =
0,...,N_s-1.

16. Activate sensitivity calculations

Call IDASensInit () to activate forward sensitivity computations and allocate internal memory for IDAS related
to sensitivity calculations.

If a sensitivity residual function is not provided to IDASensInit (), then IDASetSensParams () must be called
after IDASensInit () and before IDASolve () to provide the array of problem parameters with respect to which
the sensitivities are computed. This array must also be attached to the “user data” pointer set with IDASe-
tUserData(). Optionally, an array of scaling factors for difference-quotient residual computations and a mask
array to select which parameters with respect to which the sensitivities are computed may also be provided to
IDASetSensParams ().

check IDASetErrFile()
17. Set sensitivity integration tolerances (optional)

Call IDASensSStolerances() or IDASensSVtolerances() to set the sensitivity integration tolerances or
IDASensEEtolerances() to have IDAS estimate tolerances for sensitivity variables based on the tolerances
supplied for states variables.

If sensitivity tolerances are estimated by IDAS, the results will be more accurate if order of magnitude is provided
by setting the pbar input to IDASetSensParams ().

18. Create sensitivity nonlinear solver

If using a non-default nonlinear solver (see §5.4.2.3), then create the desired nonlinear solver object by calling
the appropriate constructor function defined by the particular SUNNonlinearSolver implementation e.g.,

NLSSens = SUNNonlinSol_***Sens(...);

for the IDA_SIMULTANEOUS or IDA_STAGGERED options *** is the name of the nonlinear solver and . .. are
constructor specific arguments (see §9 for details).

19. Attach the sensitivity nonlinear solver

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the nonlinear
solver object by calling IDASetNonlinearSolverSensSim() when using the IDA_SIMULTANEOUS corrector
method, IDASetNonlinearSolverSensStg () when using the IDA_STAGGERED corrector method (see §5.4.2.3
for details).

20. Set sensitivity nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific to
that nonlinear solver. These must be called after IDASensInit () if using the default nonlinear solver or after
attaching a new nonlinear solver to IDAS, otherwise the optional inputs will be overridden by IDAS defaults.
See §9 for more information on optional inputs.

21.
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22.

23.
24.
25.

26.
27.

28.

Set optional inputs

Call IDASetSens* routines to change from their default values any optional inputs that control the behavior of
IDAS in computing forward sensitivities. See §5.4.2.7 for details.

Extract sensitivity solution

After each successful return from IDASolve (), the solution of the original IVP is available in the y argument of
IDASolve (), while the sensitivity solution can be extracted into yS and ypS (which can be the same as yS® and
ypS0) by calling one of the routines IDAGetSens (), IDAGetSens1(), IDAGetSensDky (), or IDAGetSens-
Dky1(Q).

Deallocate memory

Upon completion of the integration, deallocate memory for the vectors yS® and yps® using N_VDestroyVec-
torArray ().

5.4.2 User-callable routines for forward sensitivity analysis

This section describes the IDAS functions, in addition to those presented in §5.1.4, that are called by the user to setup
and solve a forward sensitivity problem.

5.4.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling IDASensInit () or IDASensInit1(), depending on
whether the sensitivity residual function returns all sensitivities at once or one by one, respectively. The form of the
call to each of these routines is as follows:

int IDASensInit (void *ida_mem, int Ns, int ism, IDASensResFn S, N_Vector *yS0, N_Vector *ypS0)

The routine IDASensInit () activates forward sensitivity computations and allocates internal memory related
to sensitivity calculations.

Arguments:
¢ ida_mem — pointer to the IDAS memory block returned by IDACreate ().
¢ Ns — the number of sensitivities to be computed.

» ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be ITDA_STMULTANEOUS or IDA_STAGGERED :

— In the IDA_SIMULTANEOUS approach, the state and sensitivity variables are corrected at the same
time. If the default Newton nonlinear solver is used, this amounts to performing a modified Newton
iteration on the combined nonlinear system.

— In the IDA_STAGGERED approach, the correction step for the sensitivity variables takes place at
the same time for all sensitivity equations, but only after the correction of the state variables has
converged and the state variables have passed the local error test.

* resS —is the C function which computes all sensitivity ODE residuals at the same time. For full details
see IDASensResFn.

* ySO — a pointer to an array of Ns vectors containing the initial values of the sensitivities of y.
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» ypSO — a pointer to an array of Ns vectors containing the initial values of the sensitivities of .
Return value:
e IDA_SUCCESS — The call to IDASensInit () was successful.

e IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

* IDA_MEM_FAIL — A memory allocation request has failed.
e IDA_TILL_INPUT — An input argument to IDASensInit () has an illegal value.
Notes:

Passing fs == NULL indicates using the default internal difference quotient sensitivity residual routine and
IDASetSensParams () must be called before IDASoIve().

If an error occurred, IDASensInit () also sends an error message to the error handler function.

In terms of the problem size N, number of sensitivity vectors V4, and maximum method order maxord, the size of the
real workspace is increased as follows:

* Base value: lenrw = lenrw + (maxord + 5)N,N

e With IDASensSVtolerances(): textttlenrw = lenrw + N, N
the size of the integer workspace is increased as follows:

* Base value: leniw = leniw + (maxord + 5)N;N;

e With IDASensSVtolerances(): leniw = leniw + N N;
where NN; is the number of integers in one N_Vector.

The routine IDASensReInit (), useful during the solution of a sequence of problems of same size, reinitializes
the sensitivity-related internal memory. The call to it must follow a call to IDASensInit () (and maybe a call to
IDAReInit()). The number Ns of sensitivities is assumed to be unchanged since the call to the initialization function.
The call to the IDASensReInit () function has the form:

int IDASensReInit (void *ida_mem, int ism, N_Vector *yS0, N_Vector *ypS0)

The routine IDASensReInit () reinitializes forward sensitivity computations.
Arguments:
* ida_mem — pointer to the IDAS memory block returned by IDACreate().

» ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be IDA_SIMULTANEOUS , IDA_STAGGERED , or IDA_STAGGERED1.

* ySO® — a pointer to an array of Ns variables of type N_Vector containing the initial values of the
sensitivities.

* ypSO® — a pointer to an array of Ns variables of type N_Vector containing the initial values of the
sensitivities of 7.

Return value:
e TDA_SUCCESS — The call to IDASensReInit () was successful.

e IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

* IDA_NO_SENS — Memory space for sensitivity integration was not allocated through a previous call to
IDASensInit().

e IDA_ILL_INPUT — An input argument to IDASensReInit () has an illegal value.
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e IDA_MEM_FAIL — A memory allocation request has failed.
Notes:

All arguments of IDASensReInit () are the same as those of the functions IDASensInit (). If an error oc-
curred, IDASensReInit () also sends a message to the error handler function.

To deallocate all forward sensitivity-related memory (allocated in a prior call to IDASensInit()), the user must call

void IDASensFree (void *ida_mem)

The function IDASensFree() frees the memory allocated for forward sensitivity computations by a previous
call to IDASensInit().

Arguments:

¢ ida_mem — pointer to the IDAS memory block returned by IDACreate ().
Return value:

* The function has no return value.

Notes:
In general, IDASensFree () need not be called by the user, as it is invoked automatically by IDAFree().

After a call to IDASensFree(), forward sensitivity computations can be reactivated only by calling
IDASensInit().

To activate and deactivate forward sensitivity calculations for successive IDAS runs, without having to allocate and
deallocate memory, the following function is provided:

int IDASensToggleO£ff (void *ida_mem)

The function IDASensToggleOff() deactivates forward sensitivity calculations. It does not deallocate
sensitivity-related memory.

Arguments:

* ida_mem — pointer to the memory previously returned by IDACreate().
Return value:

e IDA_SUCCESS — IDASensToggleOff () was successful.

e IDA_MEM_NULL — ida_mem was NULL.

Notes:
Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at a later time (using
IDASensReInit()).

5.4.2.2 Forward sensitivity tolerance specification functions
One of the following three functions must be called to specify the integration tolerances for sensitivities. Note that this
call must be made after the call to IDASensInit().

int IDASensSStolerances (void *ida_mem, realtype reltolS, realtype *abstolS)

The function IDASensSStolerances () specifies scalar relative and absolute tolerances.
Arguments:

* ida_mem — pointer to the IDAS memory block returned by IDACreate ().

e reltolS - is the scalar relative error tolerance.

* abstolS —is a pointer to an array of length Ns containing the scalar absolute error tolerances, one for
each parameter.
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Return value:
e TDA_SUCCESS — The call to IDASStolerances () was successful.

e IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

* IDA_NO_SENS — The sensitivity allocation function IDASensInit () has not been called.
e IDA_TLL_INPUT - One of the input tolerances was negative.

int IDASensSVtolerances (void *ida_mem, realtype reltolS, N_Vector *abstolS)

The function IDASensSVtolerances () specifies scalar relative tolerance and vector absolute tolerances.
Arguments:

¢ ida_mem — pointer to the IDAS memory block returned by IDACreate ().

* reltolS —is the scalar relative error tolerance.

* abstolS —is an array of Ns variables of type N_Vector. The N_Vector from abstolS[is] specifies
the vector tolerances for is -th sensitivity.

Return value:
e TDA_SUCCESS — The call to IDASVtolerances () was successful.

e IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

e IDA_NO_SENS — The allocation function for sensitivities has not been called.

e IDA_TLL_INPUT — The relative error tolerance was negative or an absolute tolerance vector had a
negative component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of any vector yS[i].

int IDASensEEtolerances (void *ida_mem)

When IDASensEEtolerances() is called, IDAS will estimate tolerances for sensitivity variables based on the
tolerances supplied for states variables and the scaling factors p.

Arguments:

¢ ida_mem — pointer to the IDAS memory block returned by IDACreate ().
Return value:

» IDA_SUCCESS — The call to IDASensEEtolerances () was successful.

e IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

e IDA_NO_SENS — The sensitivity allocation function has not been called.
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5.4.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure DAE case, when computing solution sensitivities using forward sensitivitiy analysis IDAS uses the SUN-
NonlinearSolver implementation of Newton’s method defined by the SUNNONLINSOL_NEWTON module (see §9.3) by
default. To specify a different nonlinear solver in IDAS, the user’s program must create a SUNNonlinearSolver object
by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver object to IDAS
by calling IDASetNonlinearSolverSensSim() when using the IDA_SIMULTANEOUS corrector option, or IDASet-
NonlinearSolver() and IDASetNonlinearSolverSensStg() or IDASetNonlinearSolverSensStgl() when
using the IDA_STAGGERED as documented below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver () must be called after IDAInit (); similarly
IDASetNonlinearSolverSensSim(), IDASetNonlinearSolverStg(), must be called after IDASensInit(). If
any calls to IDASolve () have been made, then IDAS will need to be reinitialized by calling IDAReInit () to ensure
that the nonlinear solver is initialized correctly before any subsequent calls to IDASolve ().

The first argument passed to the routines IDASetNonlinearSolverSensSim(), and IDASetNonlinearSol-
verSensStg(), is the IDAS memory pointer returned by IDACreate() and the second argument is the SUNNon-
linearSolver object to use for solving the nonlinear systems (2.4). A call to this function attaches the nonlinear
solver to the main IDAS integrator.

int IDASetNonlinearSolverSensSim(void *ida_mem, SUNNonlinearSolver NLS)

The function IDASetNonLinearSolverSensSim() attaches a SUNNonlinearSolver object (NLS) to IDAS
when using the IDA_SIMULTANEOUS approach to correct the state and sensitivity variables at the same time.

Arguments:

* ida_mem — pointer to the IDAS memory block.

e NLS — SUNNonlinearSolver object to use for solving nonlinear system (2.4).
Return value:

e IDA_SUCCESS — The nonlinear solver was successfully attached.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT — The SUNNONLINSOL object is NULL , does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

int IDASetNonlinearSolverSensStg(void *ida_mem, SUNNonlinearSolver NLS)

The function IDASetNonLinearSolverSensStg() attaches a SUNNonlinearSolver object (NLS) to IDAS
when using the IDA_STAGGERED approach to correct all the sensitivity variables after the correction of the state
variables.

Arguments:

¢ ida_mem — pointer to the IDAS memory block.

* NLS — SUNNONLINSOL object to use for solving nonlinear systems.
Return value:

e IDA_SUCCESS — The nonlinear solver was successfully attached.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_TLL_INPUT — The SUNNONLINSOL object is NULL , does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.
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Notes:
This function only attaches the SUNNonlinearSolver object for correcting the sensitivity variables. To
attach a SUNNonlinearSolver object for the state variable correction use IDASetNonlinearSolver ().

5.4.2.4 Forward sensitivity initial condition calculation function

IDACalcIC() also calculates corrected initial conditions for sensitivity variables of a DAE system. When used
for initial conditions calculation of the forward sensitivities, IDACalcIC() must be preceded by successful calls to
IDASensInit () (or IDASensReInit()) and should precede the call(s) to IDASolve (). For restrictions that apply
for initial conditions calculation of the state variables, see §5.1.4.7.

Calling IDACalcIC() is optional. It is only necessary when the initial conditions do not satisfy the sensitivity systems.
Even if forward sensitivity analysis was enabled, the call to the initial conditions calculation function IDACalcIC() is
exactly the same as for state variables.

flag = IDACalcIC(ida_mem, icopt, toutl);

See IDACalcIC() for alist of possible return values.

5.4.2.5 IDAS solver function
Even if forward sensitivity analysis was enabled, the call to the main solver function IDASolve () is exactly the same
as in §5.1. However, in this case the return value flag can also be one of the following:

* IDA_SRES_FAIL — The sensitivity residual function failed in an unrecoverable manner.

e IDA_REP_SRES_ERR — The user’s residual function repeatedly returned a recoverable error flag, but the solver
was unable to recover.

5.4.2.6 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to IDASensInit (), or reinitialized by a call to
IDASensReInit (), then IDAS computes both a solution and sensitivities at time t. However, IDASolve () will still
return only the solution y in yout. Solution sensitivities can be obtained through one of the following functions:

int IDAGetSens (void *ida_mem, realtype *tret, N_Vector *yS)

The function IDAGetSens () returns the sensitivity solution vectors after a successful return from IDASoIve().
Arguments:

* ida_mem — pointer to the memory previously allocated by IDAInit ().

* tret — the time reached by the solver output.

e yS — array of computed forward sensitivity vectors. This vector array must be allocated by the user.
Return value:

e TDA_SUCCESS — IDAGetSens () was successful.

e IDA_MEM_NULL — ida_mem was NULL.

e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

e IDA_BAD_DKY — yS is NULL.

Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last IDASoIve () call.
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The function IDAGetSensDky () computes the k-th derivatives of the interpolating polynomials for the sensitivity
variables at time t. This function is called by IDAGetSens () with k = 0, but may also be called directly by the user.

int IDAGetSensDky (void *ida_mem, realtype t, int k, N_Vector *dkyS)

The function IDAGetSensDky () returns derivatives of the sensitivity solution vectors after a successful return
from IDASolve().

Arguments:
* ida_mem — pointer to the memory previously allocated by IDAInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by IDAS.

¢ k — order of derivatives. k must be in the range 0, 1, ..., klast where klast is the method order of the
last successful step.

o dkyS — array of Ns vectors containing the derivatives on output. The space for dkyS must be allocated
by the user.

Return value:
e IDA_SUCCESS — IDAGetSensDky () succeeded.
e IDA_MEM_NULL — ida_mem was NULL.
* IDA_NO_SENS — Forward sensitivity analysis was not initialized.

e IDA_BAD_DKY — One of the vectors dkyS[i] is NULL.

IDA_BAD_K -k is not in the range 0, 1, ..., qlast.

IDA_BAD_T — The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
IDAGetSens1() and IDAGetSensDky1 (), defined as follows:

int IDAGetSens1 (void *ida_mem, realtype *tret, int is, N_Vector yS)

The function IDAGetSens1 returns the is-th sensitivity solution vector after a successful return from IDA-
Solve().

Arguments:

* ida_mem — pointer to the memory previously allocated by IDAInit ().

* tret — the time reached by the solver output.

* is —specifies which sensitivity vector is to be returned 0 < is < Ng.

* yS — the computed forward sensitivity vector. This vector array must be allocated by the user.
Return value:

e IDA_SUCCESS — IDAGetSens1 was successful.

IDA_MEM_NULL — ida_mem was NULL.

IDA_NO_SENS — Forward sensitivity analysis was not initialized.

IDA_BAD_IS — The index is is not in the allowed range.
IDA_BAD_DKY —yS is NULL.

IDA_BAD_T — The time t is not in the allowed range.
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Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last IDASolve () call.

int IDAGetSensDky1 (void *ida_mem, realtype t, int k, int is, N_Vector dkyS)

The function IDAGetSensDky1 returns the k-th derivative of the is-th sensitivity solution vector after a suc-
cessful return from IDASolve().

Arguments:
* ida_mem — pointer to the memory previously allocated by IDAInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by IDAS.

* k — order of derivative.

» is — specifies the sensitivity derivative vector to be returned 0 < is < Ng.

» dkyS - the vector containing the derivative. The space for dkyS must be allocated by the user.
Return value:

e IDA_SUCCESS — IDAGetQuadDky1 succeeded.

e IDA_MEM_NULL — The pointer to ida_mem was NULL.

* IDA_NO_SENS — Forward sensitivity analysis was not initialized.

e IDA_BAD_DKY — dkyS or one of the vectors dkyS[i] is NULL.

IDA_BAD_IS - The index is is not in the allowed range.

IDA_BAD_K — k is not in the range 0, 1, ..., qlast.

IDA_BAD_T — The time t is not in the allowed range.

5.4.2.7 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default values through
calls to IDASetSens* functions. Table 5.8 lists all forward sensitivity optional input functions in IDAS which are
described in detail in the remainder of this section.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a IDASetSens***
function can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Table 5.8: Forward sensitivity optional inputs :align: center

Optional input Routine name Default
Sensitivity scaling factors IDASetSensParams () NULL

DQ approximation method IDASetSensDQMethod () centered/0.0
Error control strategy IDASetSensErrCon() SUNFALSE

Maximum no. of nonlinear iterations IDASetSensMaxNonlinIters() 4

int IDASetSensParams (void *ida_mem, realtype *p, realtype *pbar, int *plist)
The function IDASetSensParams () specifies problem parameter information for sensitivity calculations.

Arguments:

* ida_mem — pointer to the IDAS memory block.
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* p — a pointer to the array of real problem parameters used to evaluate F'(¢,y, ¢, p). If non- NULL , p
must point to a field in the user’s data structure user_data passed to the residual function.

* pbar —an array of Ns positive scaling factors. If non- NULL , pbar must have all its components > 0.0.

e plist — an array of Ns non-negative indices to specify which components p[i] to use in estimating
the sensitivity equations. If non- NULL , plist must have all components > 0.

Return value:
» IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
* IDA_NO_SENS — Forward sensitivity analysis was not initialized.

e IDA_ILL_INPUT — An argument has an illegal value.

Note: The array p only needs to include the parameters with respect to which sensitivities are (potentially)
desired.

If the user provides a function to evaluate the sensitivity residuals, p need not be specified.

When computing the sensitivity residual via a difference-quotient or estimating sensitivity tolerances the results
will be more accurate if order of magnitude information is provided with pbar. Typically, if p[0] != 0, the
value pbar[i] = abs(p[plist[i]]) can be used. By default IDAS uses p[i] = 1.0.

If the user provides a function to evaluate the sensitivity residual and specifies tolerances for the sensitivity
variables, pbar need not be specified.

By default IDA computes sensitivities with respect to the first Ns parameters in p i.e., plist[i] = ifori =
®,...,Ns-1. If sensitivities with respect to the j-th parameter p[j] are desired, set plist[i] = j for some
0 <7< Ngand 0 < j < N, where N, is the number of element in p.

If the user provides a function to evaluate the sensitivity residuals, plist need not be specified.

Warning: This function must be preceded by a call to IDASensInit().

The array p must also be attached to the user data structure. For example, user_data->p = p;.

int IDASetSensDQMethod (void *ida_mem, int DQtype, realtype DQrhomax)

The function IDASetSensDQMethod () specifies the difference quotient strategy in the case in which the residual
of the sensitivity equations are to be computed by IDAS.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* DQtype — specifies the difference quotient type. Its value can be IDA_CENTERED or IDA_FORWARD.

* DQrhomax — positive value of the selection parameter used in deciding switching between a simulta-
neous or separate approximation of the two terms in the sensitivity residual.

Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_TLL_INPUT — An argument has an illegal value.
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Notes:

If DQrhomax = 0.0, then no switching is performed. The approximation is done simultaneously using either
centered or forward finite differences, depending on the value of DQtype. For values of DQrhomax > 1.0,
the simultaneous approximation is used whenever the estimated finite difference perturbations for states and
parameters are within a factor of DQrhomax, and the separate approximation is used otherwise. Note that a value
DQrhomax < 1.0 will effectively disable switching. See §2.6 for more details.

The default value are DQtype == IDA_CENTERED and DQrhomax= 0.0.

int IDASetSensErrCon(void *ida_mem, booleantype errconS)

The function IDASetSensErrCon() specifies the error control strategy for sensitivity variables.
Arguments:
* ida_mem — pointer to the IDAS memory block.

* errconS - specifies whether sensitivity variables are to be included SUNTRUE or not SUNFALSE in the
error control mechanism.

Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

Notes:
By default, errconsS is set to SUNFALSE. If errconS = SUNTRUE then both state variables and sensitiv-
ity variables are included in the error tests. If errconS = SUNFALSE then the sensitivity variables are
excluded from the error tests. Note that, in any event, all variables are considered in the convergence tests.

int IDASetSensMaxNonlinIters (void *ida_mem, int maxcorS)

The function IDASetSensMaxNonlinIters () specifies the maximum number of nonlinear solver iterations for
sensitivity variables per step.

Arguments:

¢ ida_mem — pointer to the IDAS memory block.

* maxcorS — maximum number of nonlinear solver iterations allowed per step > 0.
Return value:

e IDA_SUCCESS — The optional value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_MEM_FATIL — The SUNNONLINSOL module is NULL.

Notes:
The default value is 3.

5.4.2.8 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward sensitivity com-
putations are listed in Table 5.9 and described in detail in the remainder of this section.
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Table 5.9: Forward sensitivity optional outputs

Optional output Routine name

No. of calls to sensitivity residual function IDAGetSensNumResEvals ()

No. of calls to residual function for sensitivity IDAGetNumResEvalsSens()

No. of sensitivity local error test failures IDAGetSensNumErrTestFails()
No. of failed steps due to sensitivity nonlinear solver failures IDAGetNumStepSensSolveFails()
No. of calls to lin. solv. setup routine for sens. IDAGetSensNumLinSolvSetups()
Error weight vector for sensitivity variables IDAGetSensErriieights ()
Sensitivity-related statistics as a group IDAGetSensStats()

No. of sens. nonlinear solver iterations IDAGetSensNumNonlinSolvIters()
No. of sens. convergence failures IDAGetSensNumNonlinSolvConvFails()
Sens. nonlinear solver statistics as a group IDAGetSensNonlinSolveStats()

int IDAGetSensNumResEvals (void *ida_mem, long int *nfSevals)

The function IDAGetSensNumResEvals () returns the number of calls to the sensitivity residual function.
Arguments:

* ida_mem — pointer to the IDAS memory block.

e nfSevals — number of calls to the sensitivity residual function.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

* IDA_NO_SENS — Forward sensitivity analysis was not initialized.

int IDAGetNumResEvalsSens (void *ida_mem, long int *nfevalsS)

The function IDAGetNumResEvalsSEns () returns the number of calls to the user’s residual function due to the
internal finite difference approximation of the sensitivity residuals.

Arguments:
* ida_mem — pointer to the IDAS memory block.

e nfevalsS —number of calls to the user’s DAE residual function for the evaluation of sensitivity resid-
uals.

Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the internal finite difference approximation routines are used for the
evaluation of the sensitivity residuals.

int IDAGetSensNumErrTestFails(void *ida_mem, long int *nSetfails)

The function IDAGetSensNumErrTestFails () returns the number of local error test failures for the sensitivity
variables that have occurred.

Arguments:

* ida_mem — pointer to the IDAS memory block.
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* nSetfails — number of error test failures.

Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:

This counter is incremented only if the sensitivity variables have been included in the error test (see
IDASetSensErrCon()). Even in that case, this counter is not incremented if the ism = IDA_SIMUL-
TANEOUS sensitivity solution method has been used.

int IDAGetNumStepSensSolveFails (void *ida_mem, long int *nSncfails)
Returns the number of failed steps due to a sensitivity nonlinear solver failure.
Arguments:
* ida_mem — pointer to the IDAS memory block.
e nSncfails — number of step failures.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

int IDAGetSensNumLinSolvSetups (void *ida_mem, long int *nlinsetupsS)

The function IDAGetSensNumLinSolvSetups () returns the number of calls to the linear solver setup function
due to forward sensitivity calculations.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* nlinsetupsS — number of calls to the linear solver setup function.
Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:

This counter is incremented only if a nonlinear solver requiring a linear solve has been used and the ism =
IDA_STAGGERED sensitivity solution method has been specified (see §5.4.2.1).

int IDAGetSensStats (void *ida_mem, long int *nresSevals, long int *nresevalsS, long int *nSetfails, long int
*nlinsetupsS)

The function IDAGetSensStats () returns all of the above sensitivity-related solver statistics as a group.

Arguments:
* ida_mem — pointer to the IDAS memory block.
e nresSevals — number of calls to the sensitivity residual function.

* nresevalsS — number of calls to the user-supplied DAE residual function for sensitivity evaluations.

e nSetfails — number of error test failures.
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* nlinsetupsS — number of calls to the linear solver setup function.
Return value:
e IDA_SUCCESS — The optional output values have been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_SENS — Forward sensitivity analysis was not initialized.
int IDAGetSensErrWeights (void *ida_mem, N_Vector *eSweight)

The function IDAGetSensErriieights () returns the sensitivity error weight vectors at the current time. These
are the reciprocals of the W; of (2.5) for the sensitivity variables.

Arguments:
¢ ida_mem — pointer to the IDAS memory block.
* eSweight — pointer to the array of error weight vectors.
Return value:
e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
The user must allocate memory for eweightsS.

int IDAGetSensNumNonlinSolvIters (void *ida_mem, long int *nSniters)

The function IDAGetSensNumNonlinSolvIters() returns the number of nonlinear iterations performed for
sensitivity calculations.

Arguments:
* ida_mem — pointer to the IDAS memory block.

* nSniters — number of nonlinear iterations performed.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
* IDA_NO_SENS — Forward sensitivity analysis was not initialized.
e IDA_MEM_FATIL — The SUNNONLINSOL module is NULL.
Notes:
This counter is incremented only if ism was IDA_STAGGERED or in the call to IDASensInit ().
int IDAGetSensNumNonlinSolvConvFails (void *ida_mem, long int *nSncfails)

The function IDAGetSensNumNonlinSolvConvFails () returns the number of nonlinear convergence failures
that have occurred for sensitivity calculations.

Arguments:
* ida_mem — pointer to the IDAS memory block.

* nSncfails — number of nonlinear convergence failures.

Return value:

e IDA_SUCCESS — The optional output value has been successfully set.
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e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if ism was IDA_STAGGERED or in the call to IDASensInit ().

int IDAGetSensNonlinSolvStats(void *ida_mem, long int *nSniters, long int *nSncfails)

The function IDAGetSensNonlinSolvStats() returns the sensitivity-related nonlinear solver statistics as a
group.

Arguments:
* ida_mem — pointer to the IDAS memory block.
e nSniters — number of nonlinear iterations performed.
* nSncfails — number of nonlinear convergence failures.
Return value:
* IDA_SUCCESS — The optional output values have been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_SENS — Forward sensitivity analysis was not initialized.

e IDA_MEM_FAIL — The SUNNONLINSOL module is NULL.

5.4.2.9 Initial condition calculation optional output functions
The sensitivity consistent initial conditions found by IDAS (after a successful call to IDACalcIC()) can be obtained
by calling the following function:

int IDAGetSensConsistentIC(void *ida_mem, N_Vector *yySO_mod, N_Vector *ypS0O_mod)

The function IDAGetSensConsistentIC() returns the corrected initial conditions calculated by IDACalcIC()
for sensitivities variables.

Arguments:

* ida_mem — pointer to the IDAS memory block.

* yySO_mod — a pointer to an array of Ns vectors containing consistent sensitivity vectors.

* ypSO®_mod — a pointer to an array of Ns vectors containing consistent sensitivity derivative vectors.
Return value:

* IDA_SUCCESS — IDAGetSensConsistentIC() succeeded.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDA_NO_SENS — The function IDASensInit () has not been previously called.

e IDA_ILL_INPUT — IDASolve() has been already called.
Notes:

If the consistent sensitivity vectors or consistent derivative vectors are not desired, pass NULL for the cor-
responding argument.

Warning: The user must allocate space for yySO_mod and ypS®_mod (if not NULL).
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5.4.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §5.1.5, when using IDAS for forward
sensitivity analysis, the user has the option of providing a routine that calculates the residual of the sensitivity equations
(2.11).

By default, IDAS uses difference quotient approximation routines for the residual of the sensitivity equations. However,
IDAS allows the option for user-defined sensitivity residual routines (which also provides a mechanism for interfacing
IDAS to routines generated by automatic differentiation).

The user may provide the residuals of the sensitivity equations (2.11) for all sensitivity parameters at once, through a
function of type IDASensResFn defined by:

typedef int (*IDASensResFn)(int Ns, realtype t, N_Vector yy, N_Vector yp, N_Vector resval, N_Vector *yS,
N_Vector *ypS, N_Vector *resvalS, void *user_data, N_Vector tmpl, N_Vector tmp2, N_Vector tmp3)

This function computes the sensitivity residual for all sensitivity equations. It must compute the vectors
(OF /0y;) si(t) + (OF /0Y) $:(t) + (OF /Op;) and store them in resvalS[i].

Arguments:
* Ns —is the number of sensitivities.
* t —is the current value of the independent variable.
* yy —is the current value of the state vector, y(¢) .
* yp — is the current value of y(¢) .
* resval — contains the current value F' of the original DAE residual.
¢ yS — contains the current values of the sensitivities s; .
* ypS — contains the current values of the sensitivity derivatives s; .

e resvalS —contains the output sensitivity residual vectors. Memory allocation for resvals is handled
within IDAS.

* user_data — is a pointer to user data.
e tmpl, tmp2, tmp3 — are N_Vector s of length V which can be used as temporary storage.

Return value:
An IDASensResFn() should return O if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDA_SRES_FAIL is returned).

Notes:
There is one situation in which recovery is not possible even if IDASensResFn () function returns a re-
coverable error flag. That is when this occurs at the very first call to the IDASensResFn (), in which case
IDAS returns IDA_FIRST_RES_FAIL.

5.4.4 Integration of quadrature equations depending on forward sensitivities
IDAS provides support for integration of quadrature equations that depends not only on the state variables but also on
forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton program presented in §5.1.3 are grayed out and new or modified steps are in bold. See also §5.2.

1.
2.
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24.

25.
26.
27.
28.

29.

30.

Set vector of initial values for quadrature variables
Typically, the quadrature variables should be initialized to 0.
Initialize sensitivity-dependent quadrature integration

Call IDAQuadSensInit() to specify the quadrature equation right-hand side function and to allocate internal
memory related to quadrature integration.

Set optional inputs

Call IDASetQuadSensErrCon() to indicate whether or not quadrature variables should be used in the step
size control mechanism. If so, one of the IDAQuadSens*tolerances functions must be called to specify the
integration tolerances for quadrature variables. See §5.2.4 for details.

Extract sensitivity-dependent quadrature variables

Call IDAGetQuadSens (), IDAGetQuadSens1(), IDAGetQuadSensDky () or IDAGetQuadSensDky1() to ob-
tain the values of the quadrature variables or their derivatives at the current time.

Get optional outputs

Call IDAGetQuadSens* functions to obtain optional output related to the integration of sensitivity-dependent
quadratures. See §5.4.4.5 for details.
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31.

5.4.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function IDAQuadSensInit () activates integration of quadrature equations depending on sensitivities and allo-
cates internal memory related to these calculations. If rhsQS is input as NULL, then IDAS uses an internal function that
computes difference quotient approximations to the functions q; = (9q/dy)s; + (0q/0y)s; + dq/dp;, in the notation
of (2.10). The form of the call to this function is as follows:

int IDAQuadSensInit (void *ida_mem, IDAQuadSensRhsFn thsQS, N_Vector *yQS0)

The function IDAQuadSensInit () provides required problem specifications, allocates internal memory, and
initializes quadrature integration.

Arguments:
* ida_mem — pointer to the IDAS memory block returned by IDACreate ().

* rhsQS — is the IDAQuadSensRhsFn function which computes fgs , the right-hand side of the
sensitivity-dependent quadrature equations.

* yQSO - contains the initial values of sensitivity-dependent quadratures.

Return value:
* IDA_SUCCESS — The call to IDAQuadSensInit () was successful.
e IDA_MEM_NULL — The IDAS memory was not initialized by a prior call to IDACreate().
e IDA_MEM_FAIL — A memory allocation request failed.
e IDA_NO_SENS — The sensitivities were not initialized by a prior call to IDASensInit().
e IDA_TLL_INPUT — The parameter yQS® is NULL.

Notes:

Warning: Before calling IDAQuadSensInit (), the user must enable the sensitivites by calling
IDASensInit(). If an error occurred, IDAQuadSensInit () also sends an error message to the er-
ror handler function.

In terms of the number of quadrature variables N, and maximum method order maxord, the size of the real workspace
is increased as follows:

* Base value: lenrw = lenrw + (maxord + 5) N,

* If IDAQuadSensSVtolerances() is called: lenrw = lenrw + N N,
and the size of the integer workspace is increased as follows:

* Base value: leniw = leniw + (maxord + 5)N,

* If IDAQuadSensSVtolerances() is called: leniw = leniw + N N,

The function IDAQuadSensReInit (), useful during the solution of a sequence of problems of same size, reinitializes
the quadrature related internal memory and must follow a call to ITDAQuadSensInit (). The number Nq of quadratures
as well as the number Ns of sensitivities are assumed to be unchanged from the prior call to IDAQuadSensInit().
The call to the IDAQuadSensReInit () function has the form:

int IDAQuadSensReInit (void *ida_mem, N_Vector *yQS0)

The function IDAQuadSensReInit () provides required problem specifications and reinitializes the sensitivity-
dependent quadrature integration.
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Arguments:
* ida_mem — pointer to the IDAS memory block.
* yQSO - contains the initial values of sensitivity-dependent quadratures.
Return value:
e TIDA_SUCCESS — The call to IDAQuadSensReInit () was successful.
e IDA_MEM_NULL — The IDAS memory was not initialized by a prior call to IDACreate().

e IDA_NO_SENS — Memory space for the sensitivity calculation was not allocated by a prior call to
IDASensInit().

e IDA_NO_QUADSENS — Memory space for the sensitivity quadratures integration was not allocated by a
prior call to IDAQuadSensInit().

e IDA_TLL_INPUT — The parameter yQS® is NULL.

Notes:
If an error occurred, IDAQuadSensReInit () also sends an error message to the error handler function.

void IDAQuadSensFree (void *ida_mem);
The function IDAQuadSensFree () frees the memory allocated for sensitivity quadrature integration.
Arguments:
* ida_mem — pointer to the IDAS memory block.

Return value:
There is no return value.

Notes:
In general, IDAQuadSensFree () need not be called by the user as it is called automatically by IDAFree ().

5.4.4.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve () is exactly the same as in
§5.1. However, in this case the return value flag can also be one of the following:

e IDA_QSRHS_FAIL - the sensitivity quadrature right-hand side function failed in an unrecoverable manner.
* IDA_FIRST_QSRHS_ERR — the sensitivity quadrature right-hand side function failed at the first call.

» IDA_REP_QSRHS_ERR — convergence test failures occurred too many times due to repeated recoverable errors in
the quadrature right-hand side function. The IDA_REP_RES_ERR will also be returned if the quadrature right-
hand side function had repeated recoverable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to IDAQuadSensInit (), or reinitialized by a call
to IDAQuadSensReInit (), then IDAS computes a solution, sensitivities, and quadratures depending on sensitivities
at time t. However, IDASolve () will still return only the solutions y and g. Sensitivity-dependent quadratures can be
obtained using one of the following functions:

int IDAGetQuadSens (void *ida_mem, realtype *tret, N_Vector ¥*yQS)

The function IDAGetQuadSens () returns the quadrature sensitivity solution vectors after a successful return
from IDASolve().

Arguments:
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* ida_mem — pointer to the memory previously allocated by IDAInit ().
e tret — the time reached by the solver output.

* yQS — array of Ns computed sensitivity-dependent quadrature vectors. This array of vectors must be
allocated by the user.

Return value:
e TDA_SUCCESS — IDAGetQuadSens () was successful.
e IDA_MEM_NULL — ida_mem was NULL.
e IDA_NO_SENS - Sensitivities were not activated.
e IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e IDA_BAD_DKY - yQS or one of the yQS[i] is NULL.

The function IDAGetQuadSensDky () computes the k-th derivatives of the interpolating polynomials for the sensitivity-
dependent quadrature variables at time t. This function is called by IDAGetQuadSens () with k = 0, but may also be
called directly by the user.

int IDAGetQuadSensDky (void *ida_mem, realtype t, int k, N_Vector *dkyQS)

The function IDAGetQuadSensDky () returns derivatives of the quadrature sensitivities solution vectors after a
successful return from IDASolve().

Arguments:
* ida_mem — pointer to the memory previously allocated by IDAInit ().

* t —the time at which information is requested. The time t must fall within the interval defined by the
last successful step taken by IDAS.

¢ k — order of the requested derivative. k must be in the range 0, 1, ..., klast where klast is the method
order of the last successful step.

» dkyQS — array of Ns vectors containing the derivatives. This vector array must be allocated by the user.
Return value:

e IDA_SUCCESS — IDAGetQuadSensDky () succeeded.

e IDA_MEM_NULL — ida_mem was NULL.

IDA_NO_SENS — Sensitivities were not activated.

IDA_NO_QUADSENS - Quadratures depending on the sensitivities were not activated.

IDA_BAD_DKY — dkyQS or one of the vectors dkyQS[i] is NULL.
e IDA_BAD_K —k is not in the range 0, 1, ..., klast.
e IDA_BAD_T — The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
IDAGetQuadSens1 and IDAGetQuadSensDky1, defined as follows:

int IDAGetQuadSens1 (void *ida_mem, realtype *tret, int is, N_Vector yQS)

The function IDAGetQuadSens]1 returns the is-th sensitivity of quadratures after a successful return from IDA-
Solve().

Arguments:
* ida_mem — pointer to the memory previously allocated by IDAInit ().

e tret — the time reached by the solver output.
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* is — specifies which sensitivity vector is to be returned 0 < is < Nj.
* yQS —the computed sensitivity-dependent quadrature vector. This vector must be allocated by the user.
Return value:

e TDA_SUCCESS — IDAGetQuadSens1 was successful.

IDA_MEM_NULL — ida_mem was NULL.

IDA_NO_SENS — Forward sensitivity analysis was not initialized.

e IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e IDA_BAD_IS — The index is is not in the allowed range.

e IDA_BAD_DKY — yQS is NULL.

int IDAGetQuadSensDky1 (void *ida_mem, realtype t, int k, int is, N_Vector dkyQS)

The function IDAGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity solution vector after a
successful return from IDASolve().

Arguments:
* ida_mem — pointer to the memory previously allocated by IDAInit ().

e t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by IDAS.

e k — order of derivative. k must be in the range 0, 1, ..., klast where klast is the method order of the
last successful step.

* is —specifies the sensitivity derivative vector to be returned 0 < is < Nj.

» dkyQS - the vector containing the derivative. The space for dkyQS must be allocated by the user.
Return value:

e IDA_SUCCESS — IDAGetQuadDky1 succeeded.

e IDA_MEM_NULL — ida_mem was NULL.

* IDA_NO_SENS — Forward sensitivity analysis was not initialized.

* IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

e IDA_BAD_DKY — dkyQS is NULL.

e IDA_BAD_IS - The index is is not in the allowed range.

e IDA_BAD_K — k is not in the range 0, 1, ..., klast.

e IDA_BAD_T — The time t is not in the allowed range.

5.4.4.4 Optional inputs for sensitivity-dependent quadrature integration

IDAS provides the following optional input functions to control the integration of sensitivity-dependent quadrature
equations.

int IDASetQuadSensErrCon(void *ida_mem, booleantype errconQS)

The function IDASetQuadSensErrCon() specifies whether or not the quadrature variables are to be used in
the local error control mechanism. If they are, the user must specify the error tolerances for the quadrature
variables by calling IDAQuadSensSStolerances(), IDAQuadSensSVtolerances(), or IDAQuadSensEE-
tolerances().

Arguments:
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* ida_mem — pointer to the IDAS memory block.

* errconQS — specifies whether sensitivity quadrature variables are included SUNTRUE or not SUNFALSE
in the error control mechanism.

Return value:
» IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
* IDA_NO_SENS - Sensitivities were not activated.

* IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

Notes:
By default, errconQs is set to SUNFALSE.

Warning: It is illegal to call IDASetQuadSensErrCon() before a call to IDAQuadSensInit().

If the quadrature variables are part of the step size control mechanism, one of the following functions must be called
to specify the integration tolerances for quadrature variables.

int IDAQuadSensSStolerances (void *ida_mem, realtype reltolQS, realtype *abstolQS)
The function IDAQuadSensSStolerances () specifies scalar relative and absolute tolerances.
Arguments:
* ida_mem — pointer to the IDAS memory block.
¢ reltolQS — tolerances is the scalar relative error tolerance.
* abstolQS —is a pointer to an array containing the Ns scalar absolute error tolerances.
Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
» IDA_NO_SENS - Sensitivities were not activated.
» IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e IDA_ILL_INPUT - One of the input tolerances was negative.
int IDAQuadSensSVtolerances (void *ida_mem, realtype reltolQS, N_Vector *abstolQS)
The function IDAQuadSensSVtolerances () specifies scalar relative and vector absolute tolerances.
Arguments:
* ida_mem — pointer to the IDAS memory block.

e reltolQS — tolerances is the scalar relative error tolerance.

* abstolQS —is an array of Ns variables of type N_Vector. The N_Vector from abstolS[is] spec-
ifies the vector tolerances for is -th quadrature sensitivity.

Return value:
e IDA_SUCCESS — The optional value has been successfully set.
e IDA_NO_QUAD — Quadrature integration was not initialized.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
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» IDA_NO_SENS — Sensitivities were not activated.
e IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e IDA_ILL_INPUT - One of the input tolerances was negative.

int IDAQuadSensEEtolerances (void *ida_mem)

The function IDAQuadSensEEtolerances () specifies that the tolerances for the sensitivity-dependent quadra-
tures should be estimated from those provided for the pure quadrature variables.

Arguments:
* ida_mem — pointer to the IDAS memory block.
Return value:
* IDA_SUCCESS — The optional value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_SENS - Sensitivities were not activated.
e IDA_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

Notes:
When IDAQuadSensEEtolerances() is used, before calling IDASolve (), integration of pure quadra-
tures must be initialized (see §5.2) and tolerances for pure quadratures must be also specified (see §5.2.4).

5.4.4.5 Optional outputs for sensitivity-dependent quadrature integration
IDAS provides the following functions that can be used to obtain solver performance information related to quadrature
integration.

int IDAGetQuadSensNumRhsEvals (void *ida_mem, long int *nrhsQSevals)

The function IDAGetQuadSensNumRhsEvals () returns the number of calls made to the user’s quadrature right-
hand side function.

Arguments:
* ida_mem — pointer to the IDAS memory block.
e nrhsQSevals — number of calls made to the user’s rhsQS function.
Return value:
* IDA_SUCCESS — The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
» IDA_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.

int IDAGetQuadSensNumErrTestFails(void *ida_mem, long int *nQSetfails)

The function IDAGetQuadSensNumErrTestFails() returns the number of local error test failures due to
quadrature variables.

Arguments:

* ida_mem — pointer to the IDAS memory block.

* nQSetfails — number of error test failures due to quadrature variables.
Return value:

e IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.
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» IDA_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.
int IDAGetQuadSensErriWeights (void *ida_mem, N_Vecror *eQSweight)

The function IDAGetQuadSensErrieights () returns the quadrature error weights at the current time.
Arguments:

* ida_mem — pointer to the IDAS memory block.

* eQSweight — array of quadrature error weight vectors at the current time.
Return value:

* IDA_SUCCESS — The optional output value has been successfully set.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

* IDA_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.
Notes:

Warning: The user must allocate memory for eQSweight. If quadratures were not included in the
error control mechanism (through a call to IDASetQuadSensErrCon() with errconQS=SUNTRUE),
IDAGetQuadSensErriieights () does not set the eQSweight vector.

int IDAGetQuadSensStats(void *ida_mem, long int *nrhsQSevals, long int *nQSetfails)
The function IDAGetQuadSensStats () returns the IDAS integrator statistics as a group.

Arguments:

¢ ida_mem — pointer to the IDAS memory block.

e nrhsQSevals — number of calls to the user’s rhsQS function.

* nQSetfails — number of error test failures due to quadrature variables.
Return value:

e IDA_SUCCESS — the optional output values have been successfully set.

e IDA_MEM_NULL - the ida_mem pointer is NULL.

e IDA_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.

5.4.4.6 User-supplied function for sensitivity-dependent quadrature integration

For the integration of sensitivity-dependent quadrature equations, the user must provide a function that defines the resid-
ual of those quadrature equations. For the sensitivities of quadratures (2.10) with integrand g, the appropriate residual
functions are given by ¢; = dq/0ys; + 0q/0Y$; + 0q0p;. This user function must be of type IDAQuadSensRhsFn
defined as follows:

typedef int (*IDAQuadSensRhsFn)(int Ns, realtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector rrQ, N_Vector *rhsvalQS, void *user_data, N_Vector tmpl, N_Vector tmp2, N_Vector tmp3)

This function computes the sensitivity quadrature equation right-hand side for a given value of the independent
variable ¢ and state vector y.

Arguments:
¢ Ns —is the number of sensitivity vectors.

* t —is the current value of the independent variable.
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* yy —is the current value of the dependent variable vector, y(t).
* yp —is the current value of the dependent variable vector, (t).
* yyS —is an array of Ns variables of type N_Vector containing the dependent sensitivity vectors s;.

e ypS —is an array of Ns variables of type N_Vector containing the dependent sensitivity derivatives

* rrQ - is the current value of the quadrature right-hand side q.

* rhsvalQS - contains the Ns output vectors.

* user_data — is the user_data pointer passed to IDASetUserData().

e tmpl, tmp2, tmp3 — are N_Vector s which can be used as temporary storage.

Return value:
An IDAQuadSensRhsFn should return O if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDA_QRHS_FAIL is returned).

Notes:
Allocation of memory for rhsvalQs is automatically handled within IDAS.

Both yy and yp are of type N_Vector and both yyS and ypS are pointers to an array containing Ns vectors of
type N_Vector. It is the user’s responsibility to access the vector data consistently (including the use of the
correct accessor macros from each N_Vector implementation).

There is one situation in which recovery is not possible even if IDAQuadSensRhsFn function returns a recover-
able error flag. That is when this occurs at the very first call to the IDAQuadSensRhsFn, in which case IDAS
returns IDA_FIRST_QSRHS_ERR).

5.4.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of IDAS may appear at
first glance to be erroneous. One would expect that, in such cases, the sensitivity variables would not influence in any
way the step size selection.

The short explanation of this behavior is that the step size selection implemented by the error control mechanism in
IDAS is based on the magnitude of the correction calculated by the nonlinear solver. As mentioned in §5.4.2.1, even with
partial error control selected in the call to IDASensInit (), the sensitivity variables are included in the convergence
tests of the nonlinear solver.

When using the simultaneous corrector method §2.6, the nonlinear system that is solved at each step involves both the
state and sensitivity equations. In this case, it is easy to see how the sensitivity variables may affect the convergence
rate of the nonlinear solver and therefore the step size selection. The case of the staggered corrector approach is more
subtle. The sensitivity variables at a given step are computed only once the solver for the nonlinear state equations
has converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence problems,
IDAS will attempt to improve the initial guess by reducing the step size in order to provide a better prediction of the
sensitivity variables. Moreover, even if there are no convergence failures in the solution of the sensitivity system, IDAS
may trigger a call to the linear solver’s setup routine which typically involves reevaluation of Jacobian information
(Jacobian approximation in the case of matrix-based linear solvers, or preconditioner data in the case of the Krylov
solvers). The new Jacobian information will be used by subsequent calls to the nonlinear solver for the state equations
and, in this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver convergence failures
or calls to the linear solver setup routine have been triggered by convergence problems due to the state or the sensitivity
equations. When using one of the staggered corrector methods, however, these situations can be identified by carefully
monitoring the diagnostic information provided through optional outputs. If there are no convergence failures in the
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sensitivity nonlinear solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system of DAEs on the
step size selection (through the mechanisms described above) is problem-dependent and can therefore lead to either
an increase or decrease of the total number of steps that IDAS takes to complete the simulation. At first glance, one
would expect that the impact of the sensitivity variables, if any, would be in the direction of increasing the step size and
therefore reducing the total number of steps. The argument for this is that the presence of the sensitivity variables in the
convergence test of the nonlinear solver can only lead to additional iterations (and therefore a smaller iteration error),
or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian information), both of
which will lead to larger steps being taken by IDAS. However, this is true only locally. Overall, a larger integration step
taken at a given time may lead to step size reductions at later times, due to either nonlinear solver convergence failures
or error test failures.

5.5 Using IDAS for Adjoint Sensitivity Analysis

This chapter describes the use of IDAS to compute sensitivities of derived functions using adjoint sensitivity analysis.
As mentioned before, the adjoint sensitivity module of IDAS provides the infrastructure for integrating backward in
time any system of DAEs that depends on the solution of the original IVP, by providing various interfaces to the main
IDAS integrator, as well as several supporting user-callable functions. For this reason, in the following sections we
refer to the backward problem and not to the adjoint problem when discussing details relevant to the DAEs that are
integrated backward in time. The backward problem can be the adjoint problem (2.19) or (2.24), and can be augmented
with some quadrature differential equations.

IDAS uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in Appendix §12.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of
the interface to the various user-callable functions and of the user-supplied functions that were not already described
in §5.1.

5.5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of IDAS. The user program is to have these
steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of the details to the later
sections. As in §5.1.3, most steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNon-
linearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the specific
name of the function to be called or macro to be referenced.

Steps that are unchanged from the skeleton programs presented in §5.1.3, §5.4.1, and §5.4.4 are grayed out and new or
modified steps are in bold.

1.
2.

Forward Problem

N o A
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10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

Allocate space for the adjoint computation

Call IDAAdjInit () to allocate memory for the combined forward-backward problem. This call requires Nd, the
number of steps between two consecutive checkpoints. IDAAdjInit () also specifies the type of interpolation
used (see §2.7.3).

Integrate forward problem

Call IDASolveF (), a wrapper for the IDAS main integration function IDASolve (), either in IDA_NORMAL mode
to the time tout or in IDA_ONE_STEP mode inside a loop (if intermediate solutions of the forward problem are
desired (see §5.5.2.3). The final value of tret is then the maximum allowable value for the endpoint 7" of the
backward problem.

Backward Problem(s)

20.

21.

22.

23.

24.

Create vectors of endpoint values for the backward problem
Create the vectors yBO and ypBO at the endpoint time tB® = 7" at which the backward problem starts.
Create the backward problem

Call IDACreateB(), a wrapper for IDACreate(), to create the IDAS memory block for the new backward
problem. Unlike IDACreate(), the function IDACreateB() does not return a pointer to the newly created
memory block (see §5.5.2.4). Instead, this pointer is attached to the internal adjoint memory block (created by
IDAAdjInit())and returns an identifier called which that the user must later specify in any actions on the newly
created backward problem.

Allocate memory for the backward problem

Call IDAInitB() (or IDAInitBS(), when the backward problem depends on the forward sensitivities). The
two functions are actually wrappers for IDAInit () and allocate internal memory, specify problem data, and
initialize IDAS at tBO for the backward problem (see §5.5.2.4).

Specify integration tolerances for backward problem

Call IDASStolerancesB() or IDASVtolerancesB() to specify a scalar relative tolerance and scalar abso-
lute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. The functions are
wrappers for IDASStolerances() and IDASVtolerances() but they require an extra argument which, the
identifier of the backward problem returned by IDACreateB(). See §5.5.2.5 for more information.

Set optional inputs for the backward problem

Call IDASet*B functions to change from their default values any optional inputs that control the behavior of
IDAS. Unlike their counterparts for the forward problem, these functions take an extra argument which, the
identifier of the backward problem returned by IDACreateB() (see §5.5.2.10).
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25.

26.

27.

28.

29.

30.

31.

32.

33.

Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and the linear
solver will be a direct linear solver, then a template Jacobian matrix must be created by calling the appropriate
constructor function defined by the particular SUNMatrix implementation.

Note: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.

It is not required to use the same matrix type for both the forward and the backward problems.

Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the desired linear
solver object for the backward problem must be created by calling the appropriate constructor function defined
by the particular SUNLinearSolver implementation.

Note: Itis notrequired to use the same linear solver module for both the forward and the backward problems; for
example, the forward problem could be solved with the SUNLINSOL_BAND linear solver module and the backward
problem with SUNLINSOL_SPGMR linear solver module.

Set linear solver interface optional inputs for the backward problem
Call IDASet*B functions to change optional inputs specific to the linear solver interface. See §5.5.2.10 for details.
Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default Newton
iteration), then initialize the IDALS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with IDASetLinearSolverB() (for additional details see §5.5.2.6).

Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNonlinearSolver implementation
e.g., NLSB = SUNNonlinSol_***(...); where *** is the name of the nonlinear solver (see Chapter §9 for
details).

Attach nonlinear solver module for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear solver interface by
attaching the nonlinear solver object by calling IDASetNonlinearSolverB().

Initialize quadrature calculation

If additional quadrature equations must be evaluated, call IDAQuadInitB() or IDAQuadInitBS() (if quadra-
ture depends also on the forward sensitivities) as shown in §5.5.2.12. These functions are wrappers around
IDAQuadInit() and can be used to initialize and allocate memory for quadrature integration. Optionally,
call IDASetQuad*B functions to change from their default values optional inputs that control the integration
of quadratures during the backward phase.

Integrate backward problem

Call IDASolveB(), a second wrapper around the IDAS main integration function IDASolve (), to integrate
the backward problem from tBO. This function can be called either in IDA_NORMAL or IDA_ONE_STEP mode.
Typically, IDASolveB() will be called in IDA_NORMAL mode with an end time equal to the initial time ¢y of the
forward problem.

Extract quadrature variables
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If applicable, call IDAGetQuadB (), a wrapper around IDAGetQuad(), to extract the values of the quadrature
variables at the time returned by the last call to IDASolveB().

34. Destroy objects

Upon completion of the backward integration, call all necessary deallocation functions. These include appro-
priate destructors for the vectors y and yB, a call to IDAFree () to free the IDAS memory block for the forward
problem. If one or more additional adjoint sensitivity analyses are to be done for this problem, a call to TDAAd-
jFree() (see §5.5.2.1) may be made to free and deallocate the memory allocated for the backward problems,
followed by a call to IDAAdjInit().

35.

The above user interface to the adjoint sensitivity module in IDAS was motivated by the desire to keep it as close as
possible in look and feel to the one for DAE IVP integration. Note that if steps (/8) - (37) are not present, a program
with the above structure will have the same functionality as one described in §5.1.3 for integration of DAEs, albeit with
some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps (/8) - (3/) above for
each successive backward problem. In the process, If there are multiple backward problems associated with the same
forward each call to IDACreateB() creates a new value of the identifier which.

5.5.2 User-callable functions for adjoint sensitivity analysis

5.5.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to IDASolveF (), memory for the combined forward-
backward problem must be allocated by a call to the function IDAAdjInit (). The form of the call to this function is

int IDAAdjInit (void *ida_mem, long int Nd, int interpType)
The function IDAAdjInit () updates IDAS memory block by allocating the internal memory needed for back-
ward integration. Space is allocated for the Nd = Ny interpolation data points, and a linked list of checkpoints
is initialized.
Arguments:
¢ ida_mem — is the pointer to the IDAS memory block returned by a previous call to IDACreate().

* Nd —is the number of integration steps between two consecutive checkpoints.

* interpType — specifies the type of interpolation used and can be IDA_POLYNOMIAL or IDA_HERMITE
, indicating variable-degree polynomial and cubic Hermite interpolation, respectively see §2.7.3.

Return value:
e IDA_SUCCESS — IDAAdjInit () was successful.
* IDA_MEM_FAIL — A memory allocation request has failed.
e IDA_MEM_NULL — ida_mem was NULL.

e IDA_ILL_INPUT - One of the parameters was invalid: Nd was not positive or interpType is not one
of the IDA_POLYNOMIAL or IDA_HERMITE.

Notes:

The user must set Nd so that all data needed for interpolation of the forward problem solution between two
checkpoints fits in memory. IDAAdjInit() attempts to allocate space for (2N, + 3) variables of type N_-
Vector.

If an error occurred, IDAAdjInit () also sends a message to the error handler function.
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int IDAAdjReInit (void *ida_mem)

The function IDAAdjReInit () reinitializes the IDAS memory block for ASA, assuming that the number of
steps between check points and the type of interpolation remain unchanged.

Arguments:
* ida_mem — is the pointer to the IDAS memory block returned by a previous call to IDACreate().
Return value:
e IDA_SUCCESS — IDAAdjReInit () was successful.
e IDA_MEM_NULL — ida_mem was NULL.
e IDA_NO_ADJ — The function IDAAdjInit () was not previously called.
Notes:
The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added to this list by calling
IDACreateB(). If a new list of backward problems is also needed, then free the adjoint memory (by calling
IDAAdjFree()) and reinitialize ASA with TDAAdjInit().

The IDAS memory for the forward and backward problems can be reinitialized separately by calling
IDAReInit () and IDAReInitB(), respectively.

void IDAAdjFree(void *ida_mem)

The function IDAAdjFree () frees the memory related to backward integration allocated by a previous call to
IDAAdjInit().

Arguments:
The only argument is the IDAS memory block pointer returned by a previous call to IDACreate().

Return value:
The function IDAAdjFree () has no return value.

Notes:

This function frees all memory allocated by IDAAdjInit (). This includes workspace memory, the linked list of
checkpoints, memory for the interpolation data, as well as the IDAS memory for the backward integration phase.

Unless one or more further calls to IDAAdjInit () are to be made, IDAAdjFree () should not be called by the
user, as it is invoked automatically by IDAFree().

5.5.2.2 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of the forward
sensitivities by calling the following function:

int IDAAdjSetNoSensi (void *ida_mem)

The function IDAAdjSetNoSensi () instructs IDASolveF () not to save checkpointing data for forward sensi-
tivities any more.

Arguments:
* ida_mem — pointer to the IDAS memory block.

Return value:
e TDA_SUCCESS — The call to IDACreateB() was successful.
e IDA_MEM_NULL — The ida_mem was NULL.
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e IDA_NO_ADJ] — The function IDAAdjInit () has not been previously called.

5.5.2.3 Forward integration function

The function IDASolveF () is very similar to the IDAS function IDASolve () in that it integrates the solution of the
forward problem and returns the solution (y, ). At the same time, however, IDASolveF () stores checkpoint data every
Nd integration steps. IDASolveF () can be called repeatedly by the user. Note that IDASolveF () is used only for the
forward integration pass within an Adjoint Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for
that, see §5.4. The call to this function has the form

int IDASolveF (void *ida_mem, realtype tout, realtype *tret, N_Vector yret, N_Vector ypret, int itask, int *ncheck)

The function IDASolveF () integrates the forward problem over an interval in ¢ and saves checkpointing data.
Arguments:

* ida_mem — pointer to the IDAS memory block.

e tout — the next time at which a computed solution is desired.

* tret — the time reached by the solver output.

* yret — the computed solution vector y.

e ypret — the computed solution vector y.

* itask — a flag indicating the job of the solver for the next step. The IDA_NORMAL task is to have
the solver take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout) and y(tout). The
IDA_ONE_STEP option tells the solver to take just one internal step and return the solution at the point
reached by that step.

* ncheck — the number of internal checkpoints stored so far.
Return value:

On return, IDASolveF () returns vectors yret, ypret and a corresponding independent variable value t =
tret, such that yret is the computed value of y(¢) and ypret the value of (¢). Additionally, it returns in ncheck
the number of internal checkpoints saved; the total number of checkpoint intervals is ncheck+1. The return value
flag (of type int) will be one of the following. For more details see the documentation for IDASoIve ().

e TDA_SUCCESS — IDASolveF () succeeded.
e IDA_TSTOP_RETURN — IDASolveF () succeeded by reaching the optional stopping point.

e TDA_ROOT_RETURN — IDASolveF () succeeded and found one or more roots. In this case, tret is the
location of the root. If nrtfn > 1, call IDAGetRootInfo() to see which g; were found to have a root.

e IDA_NO_MALLOC — The function IDAInit () has not been previously called.
e IDA_ILL_INPUT — One of the inputs to IDASolveF () is illegal.
e IDA_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tout.

e IDA_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

e IDA_ERR_FATLURE — Error test failures occurred too many times during one internal time step or occurred
with |h‘ = hpmin.

e IDA_CONV_FAILURE — Convergence test failures occurred too many times during one internal time step or
occurred with |h| = hpin.

e IDA_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.
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e IDA_LSOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.
e IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

e IDA_MEM_FAIL — A memory allocation request has failed in an attempt to allocate space for a new check-
point.

Notes:
All failure return values are negative and therefore a test flag< 0 will trap all IDASolveF () failures.

At this time, IDASolveF () stores checkpoint information in memory only. Future versions will provide for a
safeguard option of dumping checkpoint data into a temporary file as needed. The data stored at each checkpoint
is basically a snapshot of the IDAS internal memory block and contains enough information to restart the inte-
gration from that time and to proceed with the same step size and method order sequence as during the forward
integration.

In addition, IDASolveF () also stores interpolation data between consecutive checkpoints so that, at the end
of this first forward integration phase, interpolation information is already available from the last checkpoint
forward. In particular, if no checkpoints were necessary, there is no need for the second forward integration
phase.

Warning: It is illegal to change the integration tolerances between consecutive calls to IDASolveF (), as
this information is not captured in the checkpoint data.

5.5.2.4 Backward problem initialization functions

The functions IDACreateB() and IDAInitB() (or IDAInitBS()) must be called in the order listed. They instantiate
an IDAS solver object, provide problem and solution specifications, and allocate internal memory for the backward
problem.

int IDACreateB (void *ida_mem, int *which)

The function IDACreateB() instantiates an IDAS solver object for the backward problem.
Arguments:
* ida_mem — pointer to the IDAS memory block returned by IDACreate().

* which - contains the identifier assigned by IDAS for the newly created backward problem. Any call
to IDA*B functions requires such an identifier.

Return value:
* IDA_SUCCESS — The call to IDACreateB() was successful.
e IDA_MEM_NULL — The ida_mem was NULL.
e IDA_NO_ADJ] — The function IDAAdjInit () has not been previously called.
e IDA_MEM_FAIL — A memory allocation request has failed.

There are two initialization functions for the backward problem — one for the case when the backward problem does
not depend on the forward sensitivities, and one for the case when it does. These two functions are described next.

The function IDAInitB() initializes the backward problem when it does not depend on the forward sensitivities. It is
essentially wrapper for IDAInit with some particularization for backward integration, as described below.

int IDAInitB(void *ida_mem, int which, IDAResFnB resB, realtype tBO, N_Vector yBO, N_Vector ypB0)

The function IDAInitB() provides problem specification, allocates internal memory, and initializes the back-
ward problem.
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Arguments:

ida_mem — pointer to the IDAS memory block returned by IDACreate().
which — represents the identifier of the backward problem.

resB — is the C function which computes fB , the residual of the backward DAE problem. This

function has the form resB(t, y, yp, yB, ypB, resvalB, user_dataB) for full details see
§5.5.3.1.

tBO — specifies the endpoint 7" where final conditions are provided for the backward problem, normally
equal to the endpoint of the forward integration.

yBO — is the initial value at ¢ = tBO of the backward solution.

ypBO — is the initial derivative value at ¢ = tBO of the backward solution.

Return value:

Notes:

IDA_SUCCESS — The call to IDAInitB() was successful.

IDA_NO_MALLOC — The function IDAInit () has not been previously called.
IDA_MEM_NULL — The ida_mem was NULL.

IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_BAD_TBO — The final time tB® was outside the interval over which the forward problem was
solved.

IDA_ILL_INPUT - The parameter which represented an invalid identifier, or one of yB® , ypBO , resB
was NULL.

The memory allocated by IDAInitB() is deallocated by the function IDAAdjFree().

For the case when backward problem also depends on the forward sensitivities, user must call ITDAInitBS () instead
of IDAInitB(). Only the third argument of each function differs between these functions.

int IDAInitBS (void *ida_mem, int which, /DAResFnBS resBS, realtype tBO, N_Vector yB0, N_Vector ypB0)

The function IDAInitBS () provides problem specification, allocates internal memory, and initializes the back-
ward problem.

Arguments:

ida_mem — pointer to the IDAS memory block returned by IDACreate().
which — represents the identifier of the backward problem.

resBS - is the C function which computes fB , the residual or the backward DAE problem. This
function has the form resBS(t, y, yp, ¥S, ypS, yB, ypB, resvalB, user_dataB) for full
details see §5.5.3.2.

tBO — specifies the endpoint 7" where final conditions are provided for the backward problem.
yBO — is the initial value at ¢ = tBO of the backward solution.

ypBO — is the initial derivative value at ¢ = tBO of the backward solution.

Return value:

IDA_SUCCESS — The call to IDAInitB() was successful.

IDA_NO_MALLOC — The function IDAInit () has not been previously called.
IDA_MEM_NULL — The ida_mem was NULL.

IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.
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Notes:

IDA_BAD_TBO — The final time tB® was outside the interval over which the forward problem was
solved.

IDA_ILL_INPUT - The parameter which represented an invalid identifier, or one of yB® , ypBO , resB

was NULL , or sensitivities were not active during the forward integration.

The memory allocated by IDAInitBS() is deallocated by the function IDAAdjFree().

The function IDAReInitB() reinitializes idas for the solution of a series of backward problems, each identified by a
value of the parameter which. IDAReInitB() is essentially a wrapper for IDAReInit (), and so all details given for
IDAReInit () apply here. Also, IDAReInitB() can be called to reinitialize a backward problem even if it has been
initialized with the sensitivity-dependent version IDAInitBS(). Before calling IDAReInitB() for a new backward
problem, call any desired solution extraction functions IDAGet** associated with the previous backward problem. The
call to the IDAReInitB() function has the form

int IDAReInitB(void *ida_mem, int which, realtype tBO, N_Vector yB0O, N_Vector ypB0)
The function IDAReInitB() reinitializes an IDAS backward problem.

Arguments:

ida_mem — pointer to IDAS memory block returned by IDACreate().

* which — represents the identifier of the backward problem.

tBO — specifies the endpoint 7" where final conditions are provided for the backward problem.
yBO — is the initial value at ¢ = tBO of the backward solution.

ypBO — is the initial derivative value at ¢ = tBO of the backward solution.

Return value:

IDA_SUCCESS — The call to IDAReInitB() was successful.

IDA_NO_MALLOC — The function IDAInit () has not been previously called.

IDA_MEM_NULL — The ida_mem memory block pointer was NULL.

IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_BAD_TBO — The final time tB@ is outside the interval over which the forward problem was solved.

IDA_TILL_INPUT — The parameter which represented an invalid identifier, or one of yBO® , ypB® was
NULL.

5.5.2.5 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward problem. Note
that this call must be made after the call to IDATnitB() or IDAInitBS().

int IDASStolerancesB(void *ida_mem, int which, realtype reltolB, realtype abstolB)

The function IDASStolerancesB() specifies scalar relative and absolute tolerances.

Arguments:

ida_mem — pointer to the IDAS memory block returned by IDACreate().
which — represents the identifier of the backward problem.
reltolB — is the scalar relative error tolerance.

abstolB —is the scalar absolute error tolerance.

Return value:
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IDA_SUCCESS — The call to IDASStolerancesB() was successful.

IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

IDA_NO_MALLOC — The allocation function IDAInit () has not been called.
IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_ILL_INPUT - One of the input tolerances was negative.

int IDASVtolerancesB (void *ida_mem, int which, realtype reltolB, N_Vector abstolB)

The function IDASVtolerancesB() specifies scalar relative tolerance and vector absolute tolerances.

Arguments:

ida_mem — pointer to the IDAS memory block returned by IDACreate().
which — represents the identifier of the backward problem.
reltolB — is the scalar relative error tolerance.

abstolB — is the vector of absolute error tolerances.

Return value:

Notes:

IDA_SUCCESS — The call to IDASVtolerancesB() was successful.

IDA_MEM_NULL — The IDAS memory block was not initialized through a previous call to IDACre-
ate().

IDA_NO_MALLOC — The allocation function IDAInit () has not been called.
IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_ILL_INPUT — The relative error tolerance was negative or the absolute tolerance had a negative
component.

This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the DAE state vector y.

5.5.2.6 Linear solver initialization functions for backward problem

AII'IDAS linear solver modules available for forward problems are available for the backward problem. They should be
created as for the forward problem then attached to the memory structure for the backward problem using the following

function.

int IDASetLinearSolverB (void *ida_mem, int which, SUNLinearSolver LS, SUNMatrix A)

The function IDASetLinearSolverB() attaches a generic SUNLinearSolver object LS and corresponding
template Jacobian SUNMatrix object A (if applicable) to IDAS, initializing the IDALS linear solver interface for
solution of the backward problem.

Arguments:

ida_mem — pointer to the IDAS memory block.
which — represents the identifier of the backward problem returned by IDACreateB().
LS — SUNLinearSolver object to use for solving linear systems for the backward problem.

A — SUNMatrix object for used as a template for the Jacobian for the backward problem or NULL if not
applicable.

Return value:
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IDALS_SUCCESS — The IDALS initialization was successful.

IDALS_MEM_NULL — The ida_mem pointer is NULL.

IDALS_ILL_INPUT - The parameter which represented an invalid identifier.

IDALS_MEM_FAIL — A memory allocation request failed.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.
Notes:

If LS is a matrix-based linear solver, then the template Jacobian matrix A will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMatrix type in
Chapter §7 for further information).

The previous routines IDAD1sSetLinearSolverB and IDASpilsSetLinearSolverB are now deprecated.

5.5.2.7 Nonlinear solver initialization functions for backward problem
As with the forward problem IDAS uses the SUNNonlinearSolver implementation of Newton’s method defined by
the SUNNONLINSOL_NEWTON module (see §9.3) by default.

To specify a different nonlinear solver in IDAS for the backward problem, the user’s program must create a SUNNonlin-
earSolver object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver
object to IDAS by calling IDASetNonlinearSolverB(), as documented below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolverB() mustbe called after IDATnitB(). If any
calls to IDASolveB() have been made, then IDAS will need to be reinitialized by calling IDAReInitB() to ensure
that the nonlinear solver is initialized correctly before any subsequent calls to IDASoIveB().

int IDASetNonlinearSolverB (void *ida_mem, int which, SUNNonlinearSolver NLS)

The function IDASetNonLinearSolverB() attaches a SUNNonlinearSolver object (NLS) to IDAS for the
solution of the backward problem.

Arguments:

* ida_mem — pointer to the IDAS memory block.

» which — represents the identifier of the backward problem returned by IDACreateB().

* NLS — SUNNonlinearSolver object to use for solving nonlinear systems for the backward problem.
Return value:

e IDA_SUCCESS — The nonlinear solver was successfully attached.

e IDA_MEM_NULL — The ida_mem pointer is NULL.

e IDALS_NO_ADJ] — The function IDAAdjInit has not been previously called.

e IDA_ILL_INPUT - The parameter which represented an invalid identifier or the SUNNonlinearSolver
object is NULL , does not implement the required nonlinear solver operations, is not of the correct type,
or the residual function, convergence test function, or maximum number of nonlinear iterations could
not be set.
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5.5.2.8 Initial condition calculation functions for backward problem

IDAS provides support for calculation of consistent initial conditions for certain backward index-one problems of semi-
implicit form through the functions IDACalcICB() and IDACalcICBS(). Calling them is optional. Itis only necessary
when the initial conditions do not satisfy the adjoint system.

The above functions provide the same functionality for backward problems as IDACalcIC() with parameter icopt =
IDA_YA_YDP_INIT provides for forward problems: compute the algebraic components of y B and differential compo-
nents of y B, given the differential components of yB. They require that the IDASetIdB() was previously called to
specify the differential and algebraic components.

Both functions require forward solutions at the final time tBO. IDACalcICBS() also needs forward sensitivities at the
final time tBO.

int IDACalcICB(void *ida_mem, int which, realtype tBoutl, N_Vector yfin, N_Vector ypfin)
The function IDACalcICB() corrects the initial values yB® and ypB® at time tBO for the backward problem.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which —is the identifier of the backward problem.

* tBoutl —is the first value of ¢ at which a solution will be requested from IDASoIveB(). This value is
needed here only to determine the direction of integration and rough scale in the independent variable
t.

¢ yfin — the forward solution at the final time tB®.

¢ ypfin — the forward solution derivative at the final time tBO.
Return value:

e IDA_NO_ADJ] — IDAAdjInit () has not been previously called.

e IDA_ILL_INPUT — Parameter which represented an invalid identifier.
Notes:

All failure return values are negative and therefore a test flag < 0 will trap all TDACalcICB() failures. Note
that TDACalcICB() will correct the values of y B(tBy) and yB(tBy) which were specified in the previous call to
IDAInitB() or IDAReInitB(). To obtain the corrected values, call IDAGetconsistentICB() (see §5.5.2.11).

IDACalcICB() will correct the values of yB(tBy) and yB(tBy) which were specified in the previous call
to IDAInitB() or IDAReInitB(). To obtain the corrected values, :call c:func:IDAGetConsistentICB (see
:§5.5.2.11).

In the case where the backward problem also depends on the forward sensitivities, user must call the following function
to correct the initial conditions:

int IDACalcICBS (void *ida_mem, int which, realtype tBoutl, N_Vector yfin, N_Vector ypfin, N_Vector ySfin,
N_Vector ypSfin)

The function IDACalcICBS() corrects the initial values yB® and ypB® at time tBO for the backward problem.
Arguments:

* ida_mem — pointer to the IDAS memory block.

* which —is the identifier of the backward problem.

e tBoutl —is the first value of ¢ at which a solution will be requested from IDASoIveB() .This value is
needed here only to determine the direction of integration and rough scale in the independent variable
t.
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e yfin — the forward solution at the final time tB®.
¢ ypfin — the forward solution derivative at the final time tBO.

* ySfin — a pointer to an array of Ns vectors containing the sensitivities of the forward solution at the
final time tBO.

* ypS£fin — a pointer to an array of Ns vectors containing the derivatives of the forward solution sensi-
tivities at the final time tBO.

Return value:
e IDA_NO_ADJ] — IDAAdjInit () has not been previously called.

e IDA_ILL_INPUT — Parameter which represented an invalid identifier, sensitivities were not active
during forward integration, or IDAInitBS() or IDAReInitBS () has not been previously called.

Notes:

All failure return values are negative and therefore a test flag < 0 will trap all IDACalcICBS() failures. Note
that TDACalcICBS() will correct the values of yB(tBy) and yB(tBy) which were specified in the previous
call to IDAInitBS() or IDAReInitBS(). To obtain the corrected values, call IDAGetConsistentICB() (see
§5.5.2.11).

IDACalcICBS() will correct the values of yB(tBy) and ¢y B(tBy) which were specified in the previous call to
IDAInitBS() or IDAReInitBS (). To obtain the corrected values, :call IDAGetConsistentICB().

5.5.2.9 Backward integration function

The function IDASolveB() performs the integration of the backward problem. It is essentially a wrapper for the IDAS
main integration function IDASolve () and, in the case in which checkpoints were needed, it evolves the solution of
the backward problem through a sequence of forward-backward integration pairs between consecutive checkpoints. In
each pair, the first run integrates the original IVP forward in time and stores interpolation data; the second run integrates
the backward problem backward in time and performs the required interpolation to provide the solution of the IVP to
the backward problem.

The function IDASolveB () does not return the solution yB itself. To obtain that, call the function IDAGetB (), which
is also described below.

The IDASolveB() function does not support rootfinding, unlike IDASoveF (), which supports the finding of roots
of functions of (¢,y, ). If rootfinding was performed by IDASoIveF (), then for the sake of efficiency, it should be
disabled for IDASolveB() by first calling IDARootInit () with nrtfn =0.

The call to IDASolveB() has the form

int IDASolveB (void *ida_mem, realtype tBout, int itaskB)
The function IDASolveB() integrates the backward DAE problem.

Arguments:
e ida_mem — pointer to the IDAS memory returned by IDACreate().
* tBout - the next time at which a computed solution is desired.

* itaskB - output mode a flag indicating the job of the solver for the next step. The IDA_NORMAL task is
to have the solver take internal steps until it has reached or just passed the user-specified value tBout.
The solver then interpolates in order to return an approximate value of yB(tBout). The IDA_ONE_-
STEP option tells the solver to take just one internal step in the direction of tBout and return.

Return value:

e TIDA_SUCCESS — IDASolveB() succeeded.
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Notes:

IDA_MEM_NULL — The ida_mem was NULL.
IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_NO_BCK — No backward problem has been added to the list of backward problems by a call to
IDACreateB().

IDA_NO_FWD — The function IDASoIveF () has not been previously called.
IDA_ILL_INPUT — One of the inputs to IDASolveB() is illegal.

IDA_BAD_ITASK — The itaskB argument has an illegal value.

IDA_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tBout.

IDA_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some inter-
nal step.

IDA_ERR_FAILURE — Error test failures occurred too many times during one internal time step.

IDA_CONV_FAILURE — Convergence test failures occurred too many times during one internal time
step.

IDA_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.
IDA_SOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.

IDA_BCKMEM_NULL — The IDAS memory for the backward problem was not created with a call to
IDACreateB().

IDA_BAD_TBOUT - The desired output time tBout is outside the interval over which the forward prob-
lem was solved.

IDA_REIFWD_FAIL — Reinitialization of the forward problem failed at the first checkpoint correspond-
ing to the initial time of the forward problem.

IDA_FWD_FATIL — An error occurred during the integration of the forward problem.

All failure return values are negative and therefore a test £lag< 0 will trap all IDASolveB() failures. In
the case of multiple checkpoints and multiple backward problems, a given call to ITDASolveB() in IDA_-
ONE_STEP mode may not advance every problem one step, depending on the relative locations of the current
times reached. But repeated calls will eventually advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function IDAGetB() as follows:

int IDAGetB(void *ida_mem, int which, realtype *tret, N_Vector yB, N_Vector ypB)
The function IDAGetB () provides the solution yB of the backward DAE problem.

Arguments:

ida_mem — pointer to the IDAS memory returned by IDACreate().
which — the identifier of the backward problem.

tret — the time reached by the solver output.

yB — the backward solution at time tret.

ypB — the backward solution derivative at time tret.

Return value:

IDA_SUCCESS — IDAGetB() was successful.
IDA_MEM_NULL — ida_mem is NULL.
IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

5.5.

Using IDAS for Adjoint Sensitivity Analysis 177



User Documentation for IDAS, v5.5.1

e IDA_ILL_INPUT — The parameter which is an invalid identifier.

Notes:
To obtain the solution associated with a given backward problem at some other time within the last inte-
gration step, first obtain a pointer to the proper IDAS memory structure by calling IDAGetAdjIDABmem()
and then use it to call IDAGetDky ().

Warning: The user must allocate space for yB and ypB.

5.5.2.10 Optional input functions for the backward problem

As for the forward problem there are numerous optional input parameters that control the behavior of the IDAS solver
for the backward problem. IDAS provides functions that can be used to change these optional input parameters from
their default values which are then described in detail in the remainder of this section, beginning with those for the main
IDAS solver and continuing with those for the linear solver interfaces. For the most casual use of IDAS, the reader can
skip to §5.5.3.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a IDASet***B function
can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Main solver optional input functions

The adjoint module in IDAS provides wrappers for most of the optional input functions defined in §5.1.4.10. The only
difference is that the user must specify the identifier which of the backward problem within the list managed by IDAS.

The optional input functions defined for the backward problem are:

flag = IDASetUserDataB(ida_mem, which, user_dataB);

flag = IDASetMaxOrdB(ida_mem, which, maxordB);

flag = IDASetMaxNumStepsB(ida_mem, which, mxstepsB);
flag = IDASetInitStepB(ida_mem, which, hinB)

flag = IDASetMaxStepB(ida_mem, which, hmaxB);

flag = IDASetSuppressAlgB(ida_mem, which, suppressalgB);
flag = IDASetIdB(ida_mem, which, idB);

flag = IDASetConstraintsB(ida_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it can also be IDA_-
NO_ADJ if IDAAdjInit () has not been called, or IDA_ILL_INPUT if which was an invalid identifier.

Linear solver interface optional input functions

When using matrix-based linear solver modules for the backward problem, i.e., a non-NULL SUNMatrix object A was
passed to IDASetLinearSolverB(), the IDALS linear solver interface needs a function to compute an approximation
to the Jacobian matrix. This can be attached through a call to either IDASetJacFnB() or IDASetJacFnBS (), with the
second used when the backward problem depends on the forward sensitivities.

int IDASetJacFnB(void *ida_mem, int which, /DALsJacFnB jacB)

The function IDASetJacFnB() specifies the Jacobian approximation function to be used for the backward prob-
lem.

Arguments:
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* ida_mem — pointer to the IDAS memory block.

* which — represents the identifier of the backward problem.

* jacB - user-defined Jacobian approximation function.
Return value:

e TIDALS_SUCCESS — IDASetJacFnB() succeeded.

IDALS_MEM_NULL — The ida_mem was NULL.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_LMEM_NULL — The linear solver has not been initialized with a call to IDASetLinear-
SolverB().

IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The previous routine IDAD1sSetJacFnB is now a wrapper for this routine, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that users
transition to the new routine name soon.

int IDASetJacFnBS (void *ida_mem, int which, IDALsJacFnBS jacBS)

The function IDASetJacFnBS() specifies the Jacobian approximation function to be used for the backward
problem in the case where the backward problem depends on the forward sensitivities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which — represents the identifier of the backward problem.
* jacBS — user-defined Jacobian approximation function.
Return value:
* IDALS_SUCCESS — IDASetJacFnBS () succeeded.
e IDALS_MEM_NULL — The ida_mem was NULL.
e IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_LMEM_NULL — The linear solver has not been initialized with a call to IDASetLinear-
SolverBS(Q).

IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The previous routine, IDAD1sSetJacFnBS, is now deprecated.

The function IDASetLinearSolutionScalingB() can be used to enable or disable solution scaling when using a
matrix-based linear solver.

int IDASetLinearSolutionScalingB(void *ida_mem, int which, booleantype onoftB)

The function IDASetLinearSolutionScalingB() enables or disables scaling the linear system solution to
account for a change in « in the linear system in the backward problem. For more details see §8.2.1.

Arguments:
* ida_mem — pointer to the IDAS memory block.
» which — represents the identifier of the backward problem.

* onoffB — flag to enable SUNTRUE or disable SUNFALSE scaling.
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Return value:
e IDALS_SUCCESS - The flag value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver interface has not been initialized.
e IDALS_ILL_INPUT — The attached linear solver is not matrix-based.
Notes:
By default scaling is enabled with matrix-based linear solvers when using BDF methods.
By default scaling is enabled with matrix-based linear solvers when using BDF methods.

When using a matrix-free linear solver module for the backward problem, the IDALS linear solver interface requires a
function to compute an approximation to the product between the Jacobian matrix J(¢, y) and a vector v. This may be
performed internally using a difference-quotient approximation, or it may be supplied by the user by calling one of the
following two functions:

int IDASetJacTimesB(void *ida_mem, int which, IDALsJacTimesSetupFnB jsetupB, IDALsJacTimesVecFnB
jtimesB)

The function IDASetJacTimesB() specifies the Jacobian-vector setup and product functions to be used.
Arguments:

* ida_mem — pointer to the IDAS memory block.

¢ which - the identifier of the backward problem.

* jtsetupB — user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

* jtimesB — user-defined Jacobian-vector product function.
Return value:

e IDALS_SUCCESS — The optional value has been successfully set.

IDALS_MEM_NULL — The ida_mem memory block pointer was NULL.

IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Warning: The previous routine, IDASpilsSetJacTimesB, is now deprecated.

int IDASetJacTimesBS (void *ida_mem, int which, /IDALsJacTimesSetupFnBS jsetupBS, IDALsJacTimesVecFnBS
jtimesBS)

The function IDASetJacTimesBS () specifies the Jacobian-vector product setup and evaluation functions to be
used, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which - the identifier of the backward problem.

¢ jtsetupBS — user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.
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* jtimesBS — user-defined Jacobian-vector product function.
Return value:
e IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem memory block pointer was NULL.

IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_ILL_INPUT - The parameter which represented an invalid identifier.

Warning: The previous routine, IDASpilsSetJacTimesBS, is now deprecated.

When using the default difference-quotient approximation to the Jacobian-vector product for the backward problem, the
user may specify the factor to use in setting increments for the finite-difference approximation, via a call to IDASet -
IncrementFactorB().

int IDASetIncrementFactorB(void *ida_mem, int which, realtype dqincfacB)

The function IDASetIncrementFactorB() specifies the factor in the increments used in the difference quotient
approximations to matrix-vector products for the backward problem. This routine can be used in both the cases
where the backward problem does and does not depend on the forward sensitvities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
e which — the identifier of the backward problem.
* dgincfacB — difference quotient approximation factor.
Return value:
e IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.

IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_ILL_INPUT - The parameter which represented an invalid identifier.

Notes:
The default value is 1.0.

The previous routine IDASpilsSetIncrementFactorB is now a deprecated.

Additionally, When using the internal difference quotient for the backward problem, the user may also optionally sup-
ply an alternative residual function for use in the Jacobian-vector product approximation by calling IDASetJacTimes-
ResFnB(). The alternative residual side function should compute a suitable (and differentiable) approximation to the
residual function provided to IDAInitB() or IDAInitBS (). For example, as done in [30] for the forward integration
of an ODE in explicit form without sensitivity analysis, the alternative function may use lagged values when evaluating
a nonlinearity in the right-hand side to avoid differencing a potentially non-differentiable factor.

int IDASetJacTimesResFnB(void *ida_mem, int which, IDAResFn jtimesResFn)

The function IDASetJacTimesResFnB() specifies an alternative DAE residual function for use in the internal
Jacobian-vector product difference quotient approximation for the backward problem.

Arguments:

* ida_mem — pointer to the IDAS memory block.
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* which — the identifier of the backward problem.

* jtimesResFn — is the C function which computes the alternative DAE residual function to use in
Jacobian-vector product difference quotient approximations. This function has the form res(t, yy,
yp, resval, user_data). For full details see §5.1.5.1.

Return value:
e IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
e IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

e IDALS_ILL_INPUT — The parameter which represented an invalid identifier or the internal difference
quotient approximation is disabled.

Notes:
The default is to use the residual function provided to IDAInit () in the internal difference quotient. If the
input resudual function is NULL, the default is used.

This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolverB().

When using an iterative linear solver for the backward problem, the user may supply a preconditioning operator to aid
in solution of the system, or she/he may adjust the convergence tolerance factor for the iterative linear solver. These
may be accomplished through calling the following functions:

int IDASetPreconditionerB (void *ida_mem, int which, IDALsPrecSetupFnB psetupB, IDALsPrecSolveFnB

psolveB)
The function IDASetPrecSolveFnB() specifies the preconditioner setup and solve functions for the backward
integration.
Arguments:

* ida_mem — pointer to the IDAS memory block.
* which - the identifier of the backward problem.
* psetupB — user-defined preconditioner setup function.
* psolveB — user-defined preconditioner solve function.
Return value:
* IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem memory block pointer was NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
e IDALS_NO_ADJ] — The function IDAAdjInit () has not been previously called.
e IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The psetupB argument may be NULL if no setup operation is involved in the preconditioner.

Warning: The previous routine IDASpilsSetPreconditionerB is now deprecated.
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int IDASetPreconditionerBS (void *ida_mem, int which, IDALsPrecSetupFnBS psetupBS, IDALsPrecSolveFnBS
psolveBS)

The function IDASetPrecSolveFnBS () specifies the preconditioner setup and solve functions for the backward
integration, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
e which — the identifier of the backward problem.
* psetupBS — user-defined preconditioner setup function.
* psolveBS — user-defined preconditioner solve function.
Return value:

e IDALS_SUCCESS — The optional value has been successfully set.

IDALS_MEM_NULL — The ida_mem memory block pointer was NULL.

IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The psetupBS argument may be NULL if no setup operation is involved in the preconditioner.

Warning: The previous routine IDASpilsSetPreconditionerBS is now deprecated.

int IDASetEpsLinB(void *ida_mem, int which, realtype eplifacB)

The function IDASetEpsLinB () specifies the factor by which the Krylov linear solver’s convergence test constant
is reduced from the nonlinear iteration test constant. (See §2.2). This routine can be used in both the cases
wherethe backward problem does and does not depend on the forward sensitvities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which - the identifier of the backward problem.
* eplifacB - linear convergence safety factor >= 0.0.
Return value:
e IDALS_SUCCESS — The optional value has been successfully set.
e IDALS_MEM_NULL — The ida_mem pointer is NULL.
e IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.
e IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.
e IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The default value is 0.05.

Passing a value eplifacB = 0.0 also indicates using the default value.
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Warning: The previous routine IDASpilsSetEpsLinB is now deprecated.

int IDASetLSNormFactorB(void *ida_mem, int which, realtype nrmfac)

The function IDASetLSNormFactorB() specifies the factor to use when converting from the integrator tolerance
(WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac *
tol_WRMS. This routine can be used in both the cases wherethe backward problem does and does not depend on
the forward sensitvities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which - the identifier of the backward problem.
* nrmfac — the norm conversion factor. If nrmfac is:
— > 0 then the provided value is used.

— = 0 then the conversion factor is computed using the vector length i.e., nrmfac = N_-
VGetLength(y) default.

— < 0 then the conversion factor is computed using the vector dot product nrmfac = N_-
VDotProd(v,v) where all the entries of v are one.

Return value:

e IDALS_SUCCESS — The optional value has been successfully set.

IDALS_MEM_NULL — The ida_mem pointer is NULL.

IDALS_LMEM_NULL — The IDALS linear solver has not been initialized.

IDALS_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDALS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolverB().

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (IDAS v4.0.0) the value of nrmfac was
computed using the vector dot product i.e., the nrmfac < 0 case.

5.5.2.11 Optional output functions for the backward problem

Main solver optional output functions

The user of the adjoint module in IDAS has access to any of the optional output functions described in §5.1.4.12, both
for the main solver and for the linear solver modules. The first argument of these IDAGet* and IDA*Get* functions is
the pointer to the IDAS memory block for the backward problem. In order to call any of these functions, the user must
first call the following function to obtain this pointer:

void *IDAGetAdjIDABmem (void *ida_mem, int which)
The function IDAGetAdjIDABmem() returns a pointer to the IDAS memory block for the backward problem.

Arguments:
* ida_mem — pointer to the IDAS memory block created by IDACreate ().

* which - the identifier of the backward problem.
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Return value:

 The return value, ida_memB (of type void *),is a pointer to the idas memory for the backward prob-
lem.

Warning: The user should not modify ida_memB in any way.

Optional output calls should pass ida_memB as the first argument; thus, for example, to get the number of
integration steps: flag = IDAGetNumSteps(idas_memB,&nsteps).

To get values of the forward solution during a backward integration, use the following function. The input value of t
would typically be equal to that at which the backward solution has just been obtained with IDAGetB(). In any case,
it must be within the last checkpoint interval used by IDASolveB().

int IDAGetAdjY (void *ida_mem, realtype t, N_Vector y, N_Vector yp)

The function IDAGetAdjY () returns the interpolated value of the forward solution y and its derivative during a
backward integration.

Arguments:
* ida_mem — pointer to the IDAS memory block created by IDACreate ().
 t — value of the independent variable at which y is desired input.
* y — forward solution y/(t).
* yp — forward solution derivative ¢(t).
Return value:
e IDA_SUCCESS — IDAGetAdjY () was successful.
e IDA_MEM_NULL — ida_mem was NULL.

* IDA_GETY_BADT — The value of t was outside the current checkpoint interval.

Warning: The user must allocate space for y and yp.

int IDAGetAdjCheckPointsInfo(void *ida_mem, IDAadjCheckPointRec *ckpnt)

The function IDAGetAdjCheckPointsInfo() loads an array of ncheck+1 records of type IDAadjCheck-
PointRec(). The user must allocate space for the array ckpnt.

Arguments:

* ida_mem — pointer to the IDAS memory block created by IDACreate ().

e ckpnt — array of ncheck+1 checkpoint records, each of type IDAadjCheckPointRec().
Return value:

* void

Notes:
The members of each record ckpnt[i] are:

e ckpnt[i].my_addr (void *) address of current checkpoint in ida_mem->ida_adj_mem
e ckpnt[i].next_addr (void *) address of next checkpoint
e ckpnt[i].t0 (realtype) start of checkpoint interval

e ckpnt[i].t1 (realtype) end of checkpoint interval
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e ckpnt[i].nstep (long int) step counter at ckeckpoint t0
e ckpnt[i].order (int) method order at checkpoint t®

e ckpnt[i].step (realtype) step size at checkpoint t®

Initial condition calculation optional output function

int IDAGetConsistentICB(void *ida_mem, int which, N_Vector yBO_mod, N_Vector ypBO_mod)

The function IDAGetConsistentICB() returns the corrected initial conditions for backward problem calculated
by IDACalcICB().

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which - is the identifier of the backward problem.
* yBO®_mod — consistent initial vector.
¢ ypBO®_mod — consistent initial derivative vector.
Return value:
* IDA_SUCCESS - The optional output value has been successfully set.
e IDA_MEM_NULL — The ida_mem pointer is NULL.
e IDA_NO_ADJ — IDAAdjInit () has not been previously called.
e IDA_TLL_INPUT — Parameter which did not refer a valid backward problem identifier.

Notes:
If the consistent solution vector or consistent derivative vector is not desired, pass NULL for the correspond-
ing argument.

Warning: The user must allocate space for yBO_mod and ypBO_mod (if not NULL).

5.5.2.12 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on the forward
sensitivities. Accordingly, one of the ITDAQuadInitB() or IDAQuadInitBS () should be used to allocate internal mem-
ory and to initialize backward quadratures. For any other operation (extraction, optional input/output, reinitialization,
deallocation), the same function is called regardless of whether or not the quadratures are sensitivity-dependent.

Backward quadrature initialization functions

The function IDAQuadInitB() initializes and allocates memory for the backward integration of quadrature equations
that do not depende on forward sensititvities. It has the following form:

int IDAQuadInitB(void *ida_mem, int which, IDAQuadRhsFnB thsQB, N_Vector yQBO0)

The function IDAQuadInitB() provides required problem specifications, allocates internal memory, and ini-
tializes backward quadrature integration.

Arguments:

* ida_mem — pointer to the IDAS memory block.
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* which — the identifier of the backward problem.

¢ rhsQB - is the C function which computes fQ B , the residual of the backward quadrature equations.
This function has the form rhsQB(t, y, yp, yB, ypB, rhsvalBQ, user_dataB) see §5.5.3.3.

* yQBO — is the value of the quadrature variables at tB@.
Return value:
* IDA_SUCCESS — The call to IDAQuadInitB() was successful.
e IDA_MEM_NULL — ida_mem was NULL.
e IDA_NO_ADJ] — The function IDAAdjInit () has not been previously called.
e IDA_MEM_FAIL — A memory allocation request has failed.
e IDA_ILL_INPUT — The parameter which is an invalid identifier.

int IDAQuadInitBS (void *ida_mem, int which, /IDAQuadRhsFnBS rhsQBS, N_Vector yQBS0)

The function IDAQuadInitBS() provides required problem specifications, allocates internal memory, and ini-
tializes backward quadrature integration with sensitivities.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which - the identifier of the backward problem.

 rhsQBS —is the C function which computes fQ) B.S, the residual of the backward quadrature equations.
This function has the form rhsQBS(t, y, yp, yvS, ypS, yB, ypB, rhsvalBQS, user_dataB)
see §5.5.3.4.

* yQBSO —is the value of the sensitivity-dependent quadrature variables at tBO.
Return value:

e TDA_SUCCESS — The call to IDAQuadInitBS () was successful.

e IDA_MEM_NULL — ida_mem was NULL.

e IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

e IDA_MEM_FAIL — A memory allocation request has failed.

e IDA_ILL_INPUT — The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling the following func-
tion. Before calling IDAQuadReInitB() for a new backward problem, call any desired solution extraction functions
IDAGet** associated with the previous backward problem.

int IDAQuadReInitB(void *ida_mem, int which, N_Vector yQBO)
The function IDAQuadReInitB() re-initializes the backward quadrature integration.

Arguments:
* ida_mem — pointer to the IDAS memory block.
* which - the identifier of the backward problem.
* yQBO — is the value of the quadrature variables at tB@.
Return value:
* IDA_SUCCESS — The call to IDAQuadReInitB() was successful.
e IDA_MEM_NULL — ida_mem was NULL.
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IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_MEM_FAIL — A memory allocation request has failed.

IDA_NO_QUAD - Quadrature integration was not activated through a previous call to IDAQuadInitB().

IDA_ILL_INPUT — The parameter which is an invalid identifier.

Notes:
IDAQuadReInitB() can be used after a call to either IDAQuadInitB() or IDAQuadInitBS().

Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of IDASolveB(), IDAS provides a wrapper for
the function IDAGetQuad (). The call to this function has the form

int IDAGetQuadB (void *ida_mem, int which, realtype *tret, N_Vector yQB)

The function IDAGetQuadB() returns the quadrature solution vector after a successful return from IDA-
SolveB().

Arguments:
* ida_mem — pointer to the IDAS memory.
* tret — the time reached by the solver output.
¢ which — the identifier of the backward problem.
* yQB — the computed quadrature vector.
Return value:
e TDA_SUCCESS — IDAGetQuadB () was successful.
e IDA_MEM_NULL — ida_mem is NULL.
e IDA_NO_ADJ — The function IDAAdjInit () has not been previously called.

IDA_NO_QUAD - Quadrature integration was not initialized.
IDA_BAD_DKY - yQB was NULL.
IDA_TILL_INPUT — The parameter which is an invalid identifier.

Notes:
To obtain the quadratures associated with a given backward problem at some other time within the last inte-
gration step, first obtain a pointer to the proper IDAS memory structure by calling IDAGetAdjIDABmem()
and then use it to call IDAGetQuadDky ().

Warning: The user must allocate space for yQB.
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Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from their default values
through calls to one of the following functions which are wrappers for the corresponding optional input functions
defined in §5.2.4. The user must specify the identifier which of the backward problem for which the optional values
are specified.

flag IDASetQuadErrConB(ida_mem, which, errconQ);
flag = IDAQuadSStolerancesB(ida_mem, which, reltolQ, abstolQ);
flag IDAQuadSVtolerancesB(ida_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it can also be IDA_-
NO_AD] if the function IDAAdjInit () has not been previously called or IDA_ILL_INPUT if the parameter which was
an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by calling the corresponding
IDAGetQuad* functions (see §5.2.5). A pointer ida_memB to the IDAS memory block for the backward problem,
required as the first argument of these functions, can be obtained through a call to the functions ITDAGetAdjIDABmem().

5.5.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required DAE residual function and any optional functions for the forward problem, when using
the adjoint sensitivity module in IDAS, the user must supply one function defining the backward problem DAE and,
optionally, functions to supply Jacobian-related information and one or two functions that define the preconditioner
(if applicable for the choice of SUNLinearSolver object) for the backward problem. Type definitions for all these
user-supplied functions are given below.

5.5.3.1 DAE residual for the backward problem

The user must provide a resB function of type IDAResFnB defined as follows:

typedef int (*IDAResFnB)(realtype t, N_Vector y, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector resvalB, void
*user_dataB)

This function evaluates the residual of the backward problem DAE system. This could be (2.19) or (2.24).
Arguments:

e t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.

¢ yp —is the current value of the forward solution derivative vector.

* yB —is the current value of the backward dependent variable vector.

* ypB —is the current value of the backward dependent derivative vector.

* resvalB —is the output vector containing the residual for the backward DAE problem.

* user_dataB - is a pointer to user data, same as passed to IDASetUserDataB() .

Return value:
An IDAResFnB should return O if successful, a positive value if a recoverable error occurred (in which case
IDAS will attempt to correct), or a negative value if an unrecoverabl failure occurred (in which case the
integration stops and IDASolveB() returns IDA_RESFUNC_FAIL).
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Notes:
Allocation of memory for resvalB is handled within IDAS. The y, yp, yB, ypB, and resvalB arguments
are all of type N_Vector, but yB, ypB, and resvalB typically have different internal representations from y
and yp. It is the user’s responsibility to access the vector data consistently (including the use of the correct
accessor macros from each N_Vector implementation). The user_dataB pointer is passed to the user’s
resB function every time it is called and can be the same as the user_data pointer used for the forward
problem.

Warning: Before calling the user’s resB function, IDAS needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers
an unrecoverable failure in the residual function which will halt the integration and IDASolveB() will
return IDA_RESFUNC_FAIL.

5.5.3.2 DAE residual for the backward problem depending on the forward sensitivities

The user must provide a resBS function of type IDAResFnBS defined as follows:

typedef int (*IDAResFnBS)(realtype t, N_Vector 'y, N_Vector yp, N_Vector *yS, N_Vector *ypS, N_Vector yB,
N_Vector ypB, N_Vector resvalB, void *user_dataB)

This function evaluates the residual of the backward problem DAE system. This could be (2.19) or (2.24).
Arguments:

* t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.

e yp —is the current value of the forward solution derivative vector.

e yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

e ypS — a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

* yB —is the current value of the backward dependent variable vector.

* ypB —is the current value of the backward dependent derivative vector.

* resvalB —is the output vector containing the residual for the backward DAE problem.

e user_dataB - is a pointer to user data, same as passed to IDASetUserDataB() .

Return value:
An IDAResFnBS should return O if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct), or a negative value if an unrecoverable error occurred (in which case
the integration stops and IDASolveB() returns IDA_RESFUNC_FAIL).

Notes:
Allocation of memory for resvalB is handled within IDAS. The y, yp, yB, ypB, and resvalB arguments
are all of type N_Vector, but yB, ypB, and resvalB typically have different internal representations from
y and yp. Likewise for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data
consistently (including the use of the correct accessor macros from each N_Vector implementation). The
user_dataB pointer is passed to the user’s resBS function every time it is called and can be the same as
the user_data pointer used for the forward problem.

Warning: Before calling the user’s resBS function, IDAS needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers
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an unrecoverable failure in the residual function which will halt the integration and IDASolveB() will
return IDA_RESFUNC_FATL.

5.5.3.3 Quadrature right-hand side for the backward problem

The user must provide an £QB function of type IDAQuadRhsFnB defined by

typedef int (*IDAQuadRhsFnB)(realtype t, N_Vector 'y, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector
rhsvalBQ, void *user_dataB)

This function computes the quadrature equation right-hand side for the backward problem.
Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
¢ yp — is the current value of the forward solution derivative vector.
* yB —is the current value of the backward dependent variable vector.
* ypB — is the current value of the backward dependent derivative vector.
* rhsvalBQ - is the output vector containing the residual for the backward quadrature equations.
* user_dataB —is a pointer to user data, same as passed to IDASetUserDataB() .

Return value:
An IDAQuadRhsFnB should return O if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the integra-
tion is halted and IDASolveB() returns IDA_QRHSFUNC_FAIL).

Notes:

Allocation of memory for rhsvalBQ is handled within IDAS. The y, yp, yB, ypB, and rhsvalBQ arguments
are all of type N_Vector, but they typically all have different internal representations. It is the user’s
responsibility to access the vector data consistently (including the use of the correct accessor macros from
each N_Vector implementation). For the sake of computational efficiency, the vector functions in the two
N_Vector implementations provided with IDAS do not perform any consistency checks with repsect to
their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s £QB function every
time it is called and can be the same as the user_data pointer used for the forward problem.

Warning: Before calling the user’s £QB function, IDAS needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers
an unrecoverable failure in the quadrature right-hand side function which will halt the integration and
IDASolveB() will return IDA_QRHSFUNC_FATL.
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5.5.3.4 Sensitivity-dependent quadrature right-hand side for the backward problem

The user must provide an £QBS function of type IDAQuadRhsFnBS defined by

typedef int (*IDAQuadRhsFnBS)(realtype t, N_Vector 'y, N_Vector yp, N_Vector *yS, N_Vector *ypS, N_Vector yB,
N_Vector ypB, N_Vector rhsvalBQS, void *user_dataB)

This function computes the quadrature equation residual for the backward problem.
Arguments:
e t —is the current value of the independent variable.
e y —is the current value of the forward solution vector.
¢ yp — is the current value of the forward solution derivative vector.
* yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
e ypS — a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.
* yB —is the current value of the backward dependent variable vector.
* ypB — is the current value of the backward dependent derivative vector.
* rhsvalBQS — is the output vector containing the residual for the backward quadrature equations.
* user_dataB — is a pointer to user data, same as passed to IDASetUserDataB() .

Return value:
An IDAQuadRhsFnBS should return O if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDASolveB() returns IDA_QRHSFUNC_FAIL).

Notes:
Allocation of memory for rhsvalBQS is handled within IDAS. The y, yp, yB, ypB, and rhsvalBQS ar-
guments are all of type N_Vector, but they typically do not all have the same internal representations.
Likewise for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each N_Vector implementation). The user_dataB
pointer is passed to the user’s £QBS function every time it is called and can be the same as the user_data
pointer used for the forward problem.

Warning: Before calling the user’s £QBS function, IDAS needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers
an unrecoverable failure in the quadrature right-hand side function which will halt the integration and
IDASolveB() will return IDA_QRHSFUNC_FATIL.

5.5.3.5 Jacobian construction for the backward problem (matrix-based linear solvers)

If a matrix-based linear solver module is is used for the backward problem (i.e., IDASetLinearSolverB() is called
with non-NULL SUNMatrix argument in the step described in §5.5.1), the user may provide a function of type IDALs-
JacFnB or IDALsJacFnBS, defined as follows:

typedef int (*IDALsJacFnB)(realtype tt, realtype c_jB, N_Vector yy, N_Vector yp, N_Vector yyB, N_Vector ypB,
N_Vector rtB, SUNMatrix JacB, void *user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)

This function computes the Jacobian of the backward problem (or an approximation to it).
Arguments:

* tt —is the current value of the independent variable.
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* c_jB —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).
¢ yy —is the current value of the forward solution vector.

¢ yp — is the current value of the forward solution derivative vector.

* yB —is the current value of the backward dependent variable vector.

* ypB — is the current value of the backward dependent derivative vector.

* rrB - is the current value of the residual for the backward problem.

* JacB - is the output approximate Jacobian matrix.

* user_dataB - is a pointer to user data — the parameter passed to IDASetUserDataB() .

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the IDALsJacFnB function as temporary storage or work space.

Return value:

An IDALsJacFnB should return O if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct, while IDALS sets last_flag to IDALS_JACFUNC_RECVR), or a nega-
tive value if it failed unrecoverably (in which case the integration is halted, IDASoIveB() returns IDA_-
LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

Notes:

A user-supplied Jacobian function must load the matrix JacB with an approximation to the Jacobian matrix
at the point (tt, yy, yB), where yy is the solution of the original IVP at time tt, and yB is the solution
of the backward problem at the same time. Information regarding the structure of the specific SUNMatrix
structure (e.g. number of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMatrix interface functions (see Chapter §7 for details). With direct linear
solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix J(t,y) is zeroed
out prior to calling the user-supplied Jacobian function so only nonzero elements need to be loaded into
JacB.

Warning: Before calling the user’s IDALsJacFnB, IDAS needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers
an unrecoverable failure in the Jacobian function which will halt the integration (IDASolveB() returns
IDA_LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

The previous function type IDAD1sJacFnB is identical to IDALsJacFnB, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new function type name soon.

typedef int (*IDALsJacFnBS)(realtype tt, realtype c_jB, N_Vector yy, N_Vector yp, N_Vector *yS, N_Vector *ypS,
N_Vector yyB, N_Vector ypB, N_Vector rtB, SUNMatrix JacB, void *user_dataB, N_Vector tmp1B, N_Vector
tmp2B, N_Vector tmp3B);

This function computes the Jacobian of the backward problem (or an approximation to it), in the case where the
backward problem depends on the forward sensitivities.

Arguments:

e tt —is the current value of the independent variable.

e c_jB —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7)).
¢ yy —is the current value of the forward solution vector.

e yp —is the current value of the forward solution derivative vector.

* yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
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* ypS —apointer to an array of Ns vectors containing the derivatives of the forward solution sensitivities.
* yB —is the current value of the backward dependent variable vector.

* ypB —is the current value of the backward dependent derivative vector.

e rrb — is the current value of the residual for the backward problem.

* JacB - is the output approximate Jacobian matrix.

* user_dataB —is a pointer to user data — the parameter passed to IDASetUserDataB() .

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacFnBS as temporary storage or work space.

Return value:
An IDALsJacFnBS should return O if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct, while IDALS sets last_flag to IDALS_JACFUNC_RECVR), or a nega-
tive value if it failed unrecoverably (in which case the integration is halted, IDASoIveB() returns IDA_-
LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

Notes:

A user-supplied dense Jacobian function must load the matrix JacB with an approximation to the Jaco-
bian matrix at the point (tt, yy, yS, yB), where yy is the solution of the original IVP at time tt,
yS is the array of forward sensitivities at time tt, and yB is the solution of the backward problem at the
same time. Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows,
upper/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMa -
trix interface functions (see Chapter §7 for details). With direct linear solvers (i.e., linear solvers with type
SUNLINEARSOLVER_DIRECT, the Jacobian matrix J(t,y) is zeroed out prior to calling the user-supplied
Jacobian function so only nonzero elements need to be loaded into JacB.

Warning: Before calling the user’s IDALsJacFnBS, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers
an unrecoverable failure in the Jacobian function which will halt the integration (IDASoIveB() returns
IDA_LSETUP_FAIL and IDALS sets 1ast_flag to IDALS_JACFUNC_UNRECVR).

The previous function type IDAD1sJacFnBS is identical to IDALsJacFnBS, and may still be used for
backward-compatibility. However, this will be deprecated in future releases, so we recommend that
users transition to the new function type name soon.

5.5.3.6 Jacobian-vector product for the backward problem (matrix-free linear solvers)

If a matrix-free linear solver is selected for the backward problem (i.e., IDASetLinearSolverB() is called with
NULL-valued SUNMatrix argument in the steps described in §5.5.1), the user may provide a function of type IDALs-
JacTimesVecFnB or IDALsJacTimesVecFnBS in the following form, to compute matrix-vector products Jv. If such
a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*IDALsJacTimesVecFnB)(realtype t, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector
resvalB, N_Vector vB, N_Vector JvB, realtype cjB, void *user_dataB, N_Vector tmp1B, N_Vector tmp2B)

This function computes the action of the backward problem Jacobian JB on a given vector vB.
Arguments:

* t —is the current value of the independent variable.

¢ yy —is the current value of the forward solution vector.

¢ yp —is the current value of the forward solution derivative vector.
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yB — is the current value of the backward dependent variable vector.

ypB — is the current value of the backward dependent derivative vector.

resvalB — is the current value of the residual for the backward problem.

vB — is the vector by which the Jacobian must be multiplied.

JvB — is the computed output vector, JB*vB .

cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size (o in (2.7) ).

user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB() .

tmp1B, tmp2B — are pointers to memory allocated for variables of type N_Vector which can be used
by IDALsJacTimesVecFnB as temporary storage or work space.

Return value:
The return value of a function of type IDALsJtimesVecFnB should be if successful or nonzero if an error
was encountered, in which case the integration is halted.

Notes:

A user-supplied Jacobian-vector product function must load the vector JvB with the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type IDALsJacTimesVecFn (see §5.1.5.6). If the backward
problem is the adjoint of § = f(¢,y), then this function is to compute — (8f/8yi)T UB.

Warning: The previous function type IDASpilsJacTimesVecFnB is identical to IDALsJacTimesVecFnB,
and may still be used for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new function type name soon.

typedef int (*IDALsJacTimesVecFnBS)(realtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, N_Vector vB, N_Vector JvB, realtype cjB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B)

This function computes the action of the backward problem Jacobian JB on a given vector vB, in the case where
the backward problem depends on the forward sensitivities.

Arguments:

t — is the current value of the independent variable.

yy — is the current value of the forward solution vector.

yp — is the current value of the forward solution derivative vector.

yyS — a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
ypS — a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.
yB — is the current value of the backward dependent variable vector.

ypB — is the current value of the backward dependent derivative vector.

resvalB — is the current value of the residual for the backward problem.

vB — is the vector by which the Jacobian must be multiplied.

JvB — is the computed output vector, JB*vB .

cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size (« in (2.7) ).
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* user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB() .

* tmplB, tmp2B — are pointers to memory allocated for variables of type N_Vector which can be used
by IDALsJacTimesVecFnBS as temporary storage or work space.

Return value:
The return value of a function of type IDALsJtimesVecFnBS should be if successful or nonzero if an error
was encountered, in which case the integration is halted.

Notes:
A user-supplied Jacobian-vector product function must load the vector JvB with the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type IDALsJacTimesVecFn (see §5.1.5.6).

Warning: The previous function type IDASpilsJacTimesVecFnBS is identical to IDALsJac-
TimesVecFnBS, and may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

5.5.3.7 Jacobian-vector product setup for the backward problem (matrix-free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evaluated, then this needs
to be done in a user-supplied function of type IDALsJacTimesSetupFnB or IDALsJacTimesSetupFnBS, defined as
follows:

typedef int (*IDALsJacTimesSetupFnB)(realtype tt, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB,
N_Vector resvalB, realtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem.

Arguments:
e tt —is the current value of the independent variable.
* yy —is the current value of the dependent variable vector, y(t) .
* yp — is the current value of ¢(t) .
* yB —is the current value of the backward dependent variable vector.
* ypB — is the current value of the backward dependent derivative vector.
* resvalB — is the current value of the residual for the backward problem.
* cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size ( « in (2.7) ).

* user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB() .

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual user
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function with the same (t,y, yp, yB, ypB) arguments. Thus, the setup function can use any auxil-
iary data that is computed and saved during the evaluation of the DAE residual. If the user’s IDALsJac-
TimesVecFnB function uses difference quotient approximations, it may need to access quantities not in the
call list. These include the current stepsize, the error weights, etc. To obtain these, the user will need to
add a pointer to ida_mem to user_dataB and then use the IDAGet* functions described in §5.1.4.12. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

Warning: The previous function type IDASpilsJacTimesSetupFnB is identical to IDALsJacTimesSe-
tupFnB, and may still be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new function type name soon.

typedef int (*IDALsJacTimesSetupFnBS)(realtype tt, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, realtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem, in the case that the backward problem depends on the forward sensitivities.

Arguments:
e tt —is the current value of the independent variable.
* yy — is the current value of the dependent variable vector, y(t) .
* yp — is the current value of §(¢) .
* yyS — a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
* ypS — a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.
¢ yB —is the current value of the backward dependent variable vector.
* ypB — is the current value of the backward dependent derivative vector.
* resvalB —is the current value of the residual for the backward problem.
* cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size ( v in (2.7) ).

* user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB() .

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:

Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual
user function with the same (t,y, yp, yyS, ypS, yB, ypB) arguments. Thus, the setup function can
use any auxiliary data that is computed and saved during the evaluation of the DAE residual. If the user’s
IDALsJacTimesVecFnB function uses difference quotient approximations, it may need to access quantities
not in the call list. These include the current stepsize, the error weights, etc. To obtain these, the user
will need to add a pointer to ida_mem to user_dataB and then use the IDAGet* functions described in
§5.5.2.11. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h. The
previous function type IDASpilsJacTimesSetupFnBS is deprecated.

Warning: The previous function type IDASpilsJacTimesSetupFnBS is identical to IDALsJacTimes-
SetupFnBS, and may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.
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5.5.3.8 Preconditioner solve for the backward problem (iterative linear solvers)

If preconditioning is used during integration of the backward problem, then the user must provide a function to solve
the linear system Pz = r, where P is a left preconditioner matrix. This function must have one of the following two

forms:

typedef int (*IDALsPrecSolveFnB)(realtype t, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector
resvalB, N_Vector rvecB, N_Vector zvecB, realtype cjB, realtype deltaB, void *user_dataB)

This function solves the preconditioning system Pz = r for the backward problem.

Arguments:

t — is the current value of the independent variable.

yy — is the current value of the forward solution vector.

yp — is the current value of the forward solution derivative vector.

yB — is the current value of the backward dependent variable vector.

ypB — is the current value of the backward dependent derivative vector.

resvalB — is the current value of the residual for the backward problem.

rvecB —is the right-hand side vector r of the linear system to be solved.

zvecB - is the computed output vector.

cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size (v in (2.7) ).
deltaB —is an input tolerance to be used if an iterative method is employed in the solution.

user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB() .

Return value:
The return value of a preconditioner solve function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Warning: The previous function type IDASpilsPrecSolveFnB is identical to IDALsPrecSolveFnB, and
is deprecated.

typedef int (*IDALsPrecSolveFnBS)(reaitype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, N_Vector rvecB, N_Vector zvecB, realtype cjB, realtype deltaB,
void *user_dataB)

This function solves the preconditioning system Pz = r for the backward problem, for the case in which the
backward problem depends on the forward sensitivities.

Arguments:

t — is the current value of the independent variable.

yy — is the current value of the forward solution vector.

yp — is the current value of the forward solution derivative vector.

yyS — a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
ypS — a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

yB — is the current value of the backward dependent variable vector.
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* ypB — is the current value of the backward dependent derivative vector.

* resvalB —is the current value of the residual for the backward problem.

* rvecB —is the right-hand side vector r of the linear system to be solved.

* zvecB —is the computed output vector.

* cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size ( « in (2.7) ).
* deltaB —is an input tolerance to be used if an iterative method is employed in the solution.

* user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB() .

Return value:
The return value of a preconditioner solve function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Warning: The previous function type IDASpilsPrecSolveFnBS is identical to IDALsPrecSolveFnBS,
and is deprecated.

5.5.3.9 Preconditioner setup for the backward problem (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then this needs to be
done in a user-supplied function of one of the following two types:

typedef int (*IDALsPrecSetupFnB)(realtype t, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector
resvalB, realtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner for the backward
problem.

Arguments:
* t —is the current value of the independent variable.
e yy —is the current value of the forward solution vector.
¢ yp — is the current value of the forward solution vector.
* yB —is the current value of the backward dependent variable vector.
* ypB — is the current value of the backward dependent derivative vector.
* resvalB —is the current value of the residual for the backward problem.
* cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size ( « in (2.7) ).

* user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB() .

Return value:
The return value of a preconditioner setup function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Warning: The previous function type IDASpilsPrecSetupFnB is identical to IDALsPrecSetupFnB, and
is deprecated.
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typedef int (*IDALsPrecSetupFnBS)(realtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, realtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner for the backward
problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:

t — is the current value of the independent variable.

yy — is the current value of the forward solution vector.

yp — is the current value of the forward solution vector.

yyS — a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

ypS — a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

yB — is the current value of the backward dependent variable vector.

ypB — is the current value of the backward dependent derivative vector.

resvalB — is the current value of the residual for the backward problem.

cjB —is the scalar in the system Jacobian, proportional to the inverse of the step size ( v in (2.7) ).

user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB() .

Return value:
The return value of a preconditioner setup function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Warning: The previous function type IDASpilsPrecSetupFnBS is identical to IDALsPrecSetupFnBS,
and is deprecated.

5.5.4 Using the band-block-diagonal preconditioner for backward problems

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear systems can be
greatly enhanced through preconditioning. The band-block-diagonal preconditioner module IDABBDPRE, provides
interface functions through which it can be used on the backward integration phase.

The adjoint module in IDAS offers an interface to the band-block-diagonal preconditioner module IDABBDPRE de-
scribed in section §5.3.1. This generates a preconditioner that is a block-diagonal matrix with each block being a band
matrix and can be used with one of the Krylov linear solvers and with the MPI-parallel vector module NVECTOR_PAR-

ALLEL.

In order to use the IDABBDPRE module in the solution of the backward problem, the user must define one or two
additional functions, described at the end of this section.
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5.5.4.1 Usage of IDABBDPRE for the backward problem

The IDABBDPRE module is initialized by calling the following function, after an iterative linear solver for the backward
problem has been attached to IDAS by calling IDASetLinearSolverB() (see §5.5.2.6).

int IDABBDPrecInitB(void *ida_mem, int which, sunindextype NlocalB, sunindextype mudqB, sunindextype

mldgB, sunindextype mukeepB, sunindextype mlkeepB, realtype dqrelyB,
IDABBDLocalFnB GresB, IDABBD CommFnB GcommB)

The function IDABBDPrecInitB() initializes and allocates memory for the IDABBDPRE preconditioner for
the backward problem.

Arguments:

ida_mem — pointer to the IDAS memory block.

which — the identifier of the backward problem.

NlocalB - local vector dimension for the backward problem.

mudqB — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.
mldgB — lower half-bandwidth to be used in the difference-quotient Jacobian approximation.
mukeepB — upper half-bandwidth of the retained banded approximate Jacobian block.
mlkeepB — lower half-bandwidth of the retained banded approximate Jacobian block.

dqrelyB — the relative increment in components of yB used in the difference quotient approximations.
The default is dqrelyB = v/unit roundoff , which can be specified by passing dqrely = 0.0.

GresB - the C function which computes Gg(¢,y, ¥, Y5, Up), the function approximating the residual
of the backward problem.

GcommB — the optional C function which performs all interprocess communication required for the
computation of G p.

Return value:

IDALS_SUCCESS — The call to IDABBDPrecInitB() was successful.
IDALS_MEM_FAIL — A memory allocation request has failed.
IDALS_MEM_NULL — The ida_mem argument was NULL.
IDALS_LMEM_NULL — No linear solver has been attached.
IDALS_ILL_INPUT — An invalid parameter has been passed.

To reinitialize the IDABBDPRE preconditioner module for the backward problem, possibly with a change in mudgB,
mldgB, or dgqrelyB, call the following function:

int IDABBDPrecReInitB(void *ida_mem, int which, sunindextype mudqB, sunindextype mldqB, realtype dqrelyB)
The function IDABBDPrecReInitB() reinitializes the IDABBDPRE preconditioner for the backward problem.

Arguments:

ida_mem — pointer to the IDAS memory block returned by IDACreate().

which — the identifier of the backward problem.

mudgB — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.
mldgB — lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

dqrelyB — the relative increment in components of yB used in the difference quotient approximations.

Return value:
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IDALS_SUCCESS — The call to IDABBDPrecReInitB() was successful.
IDALS_MEM_FAIL — A memory allocation request has failed.

IDALS_MEM_NULL — The ida_mem argument was NULL.

IDALS_PMEM_NULL — The IDABBDPrecInitB() has not been previously called.
IDALS_LMEM_NULL — No linear solver has been attached.

IDALS_ILL_INPUT — An invalid parameter has been passed.

5.5.4.2 User-supplied functions for IDABBDPRE

To use the IDABBDPRE module, the user must supply one or two functions which the module calls to construct
the preconditioner: a required function GresB (of type IDABBDLocalFnB) which approximates the residual of the
backward problem and which is computed locally, and an optional function GcommB (of type ITDABBDCommFnB) which
performs all interprocess communication necessary to evaluate this approximate residual (see §5.3.1). The prototypes
for these two functions are described below.

typedef int (*IDABBDLocalFnB)(sunindextype NlocalB, realtype t, N_Vector y, N_Vector yp, N_Vector yB, N_Vector
ypB, N_Vector gB, void *user_dataB)

This GresB function loads the vector gB, an approximation to the residual of the backward problem, as a function
of t,y, yp, and yB and ypB.

Arguments:

NlocalB - is the local vector length for the backward problem.

t — is the value of the independent variable.

y —is the current value of the forward solution vector.

yp — is the current value of the forward solution derivative vector.

yB — is the current value of the backward dependent variable vector.
ypB — is the current value of the backward dependent derivative vector.
gB — is the output vector, Gg(t,y, ¥, Y5, UB) -

user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB() .

Return value:
An IDABBDLocalFnB should return O if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDASolveB() returns IDA_LSETUP_FAIL).

Notes:

This routine must assume that all interprocess communication of data needed to calculate gB has already
been done, and this data is accessible within user_dataB.

Warning: Before calling the user’s IDABBDLocalFnB, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the interpolation, IDAS
triggers an unrecoverable failure in the preconditioner setup function which will halt the integration
(IDASolveB() returns IDA_LSETUP_FAIL).
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typedef int (*IDABBDCommFnB)(sunindextype NlocalB, realtype t, N_Vector 'y, N_Vector yp, N_Vector yB, N_Vector
ypB, void *user_dataB)

This GcommB function performs all interprocess communications necessary for the execution of the GresB func-
tion above, using the input vectors y, yp, yB and ypB.

Arguments:

NlocalB - is the local vector length.

t — is the value of the independent variable.

y — is the current value of the forward solution vector.

yp — is the current value of the forward solution derivative vector.

yB — is the current value of the backward dependent variable vector.
ypB — is the current value of the backward dependent derivative vector.

user_dataB — is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB() .

Return value:
An IDABBDCommFnB should return O if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the integra-
tion is halted and IDASolveB() returns IDA_LSETUP_FAIL).

Notes:

The GcommB function is expected to save communicated data in space defined within the structure user_-
dataB.

Each call to the GcommB function is preceded by a call to the function that evaluates the residual of the
backward problem with the same t, y, yp, yB and ypB arguments. If there is no additional communication
needed, then pass GcommB = NULL to IDABBDPrecInitB().
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Chapter 6

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_-
Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users can
provide a custom implementation of the NVECTOR module or use one provided within SUNDIALS. The generic op-
erations are described below. In the sections following, the implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the vector, and an ops field pointing to a structure with generic vector operations.
The type N_Vector is defined as

typedef struct _generic_N_Vector *N_Vector
and the generic structure is defined as

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;
};

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector oper-
ations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid) (N_Vector);
(continues on next page)
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N_Vector (*nvclone) (N_Vector);

N_Vector (*nvcloneempty) (N_Vector) ;

void (*nvdestroy) (N_Vector);

void (*nvspace) (N_Vector, sunindextype *, sunindextype *);

realtype* (*nvgetarraypointer) (N_Vector) ;

realtype* (*nvgetdevicearraypointer) (N_Vector) ;

void (*nvsetarraypointer) (realtype *, N_Vector);

void* (*nvgetcommunicator) (N_Vector) ;

sunindextype (*nvgetlength) (N_Vector);

sunindextype (*nvgetlocallength) (N_Vector);

void (*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst) (realtype, N_Vector);

void (*nvprod) (N_Vector, N_Vector, N_Vector);

void (*nvdiv) (N_Vector, N_Vector, N_Vector);

void (*nvscale) (realtype, N_Vector, N_Vector);

void (*nvabs) (N_Vector, N_Vector);

void (*nvinv) (N_Vector, N_Vector);

void (*nvaddconst) (N_Vector, realtype, N_Vector);

realtype (*nvdotprod) (N_Vector, N_Vector);

realtype (*nvmaxnorm) (N_Vector) ;

realtype (*nvwrmsnorm) (N_Vector, N_Vector);

realtype (*nvwrmsnormmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvmin) (N_Vector);

realtype (*nvwl2norm) (N_Vector, N_Vector);

realtype (*nvllnorm) (N_Vector);

void (*nvcompare) (realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient) (N_Vector, N_Vector);

int (*nvlinearcombination) (int, realtype *, N_Vector *, N_Vector);

int (*nvscaleaddmulti) (int, realtype *, N_Vector, N_Vector *, N_Vector *);

int (*nvdotprodmulti) (int, N_Vector, N_Vector *, realtype *);

int (*nvlinearsumvectorarray) (int, realtype, N_Vector *, realtype,
N_Vector *, N_Vector *);

int (*nvscalevectorarray) (int, realtype *, N_Vector *, N_Vector *);

int (*nvconstvectorarray) (int, realtype, N_Vector *);

int (*nvwrmsnomrvectorarray) (int, N_Vector *, N_Vector *, realtype *);

int (*nvwrmsnomrmaskvectorarray) (int, N_Vector *, N_Vector *, N_Vector,

realtype *);
int (*nvscaleaddmultivectorarray) (int, int, realtype *, N_Vector *,
N_Vector **, N_Vector **);
int (*nvlinearcombinationvectorarray) (int, int, realtype *, N_Vector **,
N_Vector *);

realtype (*nvdotprodlocal) (N_Vector, N_Vector);

realtype (*nvmaxnormlocal) (N_Vector) ;

realtype (*nvminlocal) (N_Vector);

realtype (*nvllnormlocal) (N_Vector);

booleantype (*nvinvtestlocal) (N_Vector, N_Vector);

booleantype (*nvconstrmasklocal) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsumlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal (N_Vector, N_Vector, N_Vector);

(continues on next page)
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int (*nvdotprodmultilocal) (int, N_Vector, N_Vector *, realtype *);
int (*nvdotprodmultiallreduce) (int, N_Vector, realtype *);

int (*nvbufsize) (N_Vector, sunindextype *);

int (*nvbufpack) (N_Vector, void*);

int (*nvbufunpack) (N_Vector, void*);

};

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z <+ cz for vectors x and z and a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§6.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §6.2.2,
§6.2.3,§6.2.4,§6.2.5, and §6.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §6.2.2 and §6.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §6.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANY VECTOR object
(see §6.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANY VECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§6.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §6.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

6.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects —these functions are particularly useful for Fortran users to utilize the NVECTOR_MANYVECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCIloneVectorArray () and N_VCloneVectorArrayEmpty () create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray (int count, N_Vecror w)
Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).

Arguments:
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e count — number of N_Vector objects to create.
* w— template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty (int count, N_Vector w)

Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:
* count — number of N_Vector objects to create.
* w—template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray (N_Vector *vs, int count)

Destroys an array of count N_Vector objects.
Arguments:
e vs — N_Vector array to destroy.
e count — number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy () operation.

If vs was allocated using N_VCIloneVectorArray () then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCIloneVectorArrayEmpty () then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray (), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray (), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray (int count)

Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.
Arguments:

* count — length of desired N_Vector array.
Return value:

* pointer to a new N_Vector array on success.

e NULL pointer on failure.
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N_Vector *N_VGetVecAtIndexVectorArray (N_Vector *vs, int index)

Accesses the N_Vector at the location index within the N_Vector array vs.

Arguments:

* vs — N_Vector array.

¢ index — desired N_Vector to access from within vs.
Return value:

* pointer to the indexed N_Vector on success.

* NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray (N Vector *vs, int index, N_Vector w)

Sets a pointer to w at the location index within the vector array vs.
Arguments:
* vs — N_Vector array.
* index — desired location to place the pointer to w within vs.
* w— N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

6.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

Specify the content field of the N_Vector structure.

Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty () and N_VCopyOps (). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty ()

This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the
operations structure to NULL.
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Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty (N_Vector v)

This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:
e v —an N_Vector object

int N_VCopyOps (N_Vector w, N_Vector V)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:
e w — the vector to copy operations from
* v —the vector to copy operations to

Return value: If successful, this function returns 0. If either of the inputs are NULL or the ops structure of either
input is NULL, then is function returns a non-zero value.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration and shown
in Table 6.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_NVEC_CUSTOM
identifier.

Table 6.1: Vector Identifications associated with vector kernels supplied

with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAIJA vector 9
SUNDIALS NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “Many Vector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled ‘“Many Vector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15
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6.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§6.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin() and N_VMinLocal () should return the minimum of all real components of the vector, i.e., m =
min real(x;).
0<i<n (1)

e N_VConst () (and similarly N_VConstVectorArray ()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., z; = ¢+ 05 for 0 <7 < n.

e N_VAddConst () should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

e N_VWrmsNorm(), N_VWrmsNormMask (), N_VWSqrSumLocal () and N_VWSqrSumMaskLocal () should assume
that all entries of the weight vector w and the mask vector id are real-valued.

e N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current realtype, this routine should be set to NULL in the custom NVECTOR imple-
mentation.

e N_VCompare(), N_VConstrMask(), N_VMinQuotient (), N_VConstrMaskLocal() and N_VMinQuotient-
Local () are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §8.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Similarly, although both the SUNNonlinearSolver_Newton and SUNNonlinearSolver_FixedPoint modules may be
used with any of the IVP solvers (CVODE(S), IDA(S) and ARKODE) for complex-valued problems, the Anderson-
acceleration option with SUNNonlinearSolver_FixedPoint cannot be used due to its reliance on N_VDotProd(). By
this same logic, the Anderson acceleration feature within KINSOL will also not work with complex-valued vectors.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare (), N_VConstrMask (), N_VMinQuotient (), N_VCon-
strMaskLocal () and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_£2003. £90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod. £90.
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6.2 Description of the NVECTOR operations

6.2.1 Standard vector operations
The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these

operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N Vector w)

Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in Table 6.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace (N_Vector v, sunindextype *lrw, sunindextype *liw)

Returns storage requirements for the N_Vector v:
¢ [rw contains the number of realtype words
* [iw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

realtype *N_VGetArrayPointer (N_Vector v)

Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in the
N_Vector is a contiguous array of realtype and is accesible from the CPU.
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This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

realtype *N_VGetDeviceArrayPointer (N_Vector v)

Returns a device pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data
in N_Vector is a contiguous array of realtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer (realtype *vdata, N_Vector v)

Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes that the
internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

N_VSetArrayPointer(vdata,v);

void *N_VGetCommunicator (N_Vector v)

Returns a pointer to the MPI_Comm object associated with the vector (if applicable). For MPI-unaware vector
implementations, this should return NULL.

Usage:
commptr = N_VGetCommunicator(v);

sunindextype N_VGetLength(N_Vector v)

Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:

global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength(N_Vector v)

Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer () or N_VGetDeviceArrayPointer().

Usage:

local_length = N_VGetLocalLength(v);

void N_VLinearSum(realtype a, N_Vector X, realtype b, N_Vector 'y, N_Vector z)
Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:

zi=ax; +by;,, 1=0,...,n—1

The output vector z can be the same as either of the input vectors (x or y).
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Usage:

N_VLinearSum(a, x, b, y, 2);

void N_VConst (realtype ¢, N_Vector z)

Sets all components of the N_Vector z to realtype c:

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)

Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:
zi =2y, 1=0,...,n—1.
Usage:

N_VProd(x, y, z);

void N_VDiv (N_Vector x, N_Vector'y, N_Vector z)

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

X

zi=—, 1=0,...,n—1.
Yi
The y; may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.
Usage:

N_VDiv(x, y, Zz);

void N_VScale (realtype ¢, N_Vector X, N_Vector z)

Scales the N_Vector x by the realtype scalar ¢ and returns the result in z:

zi=czr;, 1=0,...,n—1.
Usage:
N_VScale(c, x, z);

void N_VAbs (\NV_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:
Zl:|Il‘, iZO,...,n—l.
Usage:

N_VAbs(x, z);
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void N_VInv(N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all

nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst (N_Vector x, realtype b, N_Vector z)

Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:
zi=x;+b, 1=0,...,n—1.
Usage:

N_VAddConst(x, b, z);

realtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

n—1
i=0
Usage:
d = N_VDotProd(x, y);
realtype N_VMaxNorm(N_Vector x)
Returns the value of the [, norm of the N_Vector x:

m = max |z;|.
0<i<n

Usage:
m = N_VMaxNorm(x);

realtype N_VWrmsNorm(N_Vector x, N_Vector w)

Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector w:

m= <i(wzwl)2> /n

i=0
Usage:

m = N_VWrmsNorm(x, w);
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realtype N_VWrmsNormMask (N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with realtype weight vector w built using only
the elements of x corresponding to positive elements of the N_Vector id:

m= (i(mlwzH(zdl)P) /n,

=0

1 >0
where H (o) = “ .
0 a<0
Usage:
m = N_VWrmsNormMask(x, w, id);
realtype N_-VMin(N_Vector x)

Returns the smallest element of the N_Vector x:

m = min x;.
0<i<n

Usage:

m = N_VMin(x);

realtype N_VW12Norm (N_Vector X, N_Vector w)
Returns the weighted Euclidean /5 norm of the N_Vector x with realtype weight vector w:

Usage:

m = N_VWL2Norm(x, w);

realtype N_VL1INorm(N_Vector x)
Returns the /1 norm of the N_Vector x:

n—1
i=0

Usage:

m = N_VL1Norm(x) ;

void N_VCompare (realtype ¢, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the realtype scalar ¢ and returns an N_Vector z such that for
all0 <7< n,

1.0 if|z] > ¢,
Z; = .
0.0 otherwise

Usage:
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N_VCompare(c, x, z);

booleantype N_VInvTest (N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);

booleantype N_VConstrMask (N_Vector ¢, N_Vector x, N_Vector m)

Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
r, < 0 if ¢ =-2,

There is no constraint on z; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

t = N_VConstrMask(c, x, m);

realtype N_VMinQuotient (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

num;

min .
0<i<n denom;

A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL (defined
in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotient (num, denom) ;

6.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.
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int N_VLinearCombination(int nv, realtype *c, N_Vector *X, N_Vector z)

This routine computes the linear combination of nv vectors with n elements:

nv—1

Zi = E CiTj.iy iZO,...,n—l,
Jj=0

where c is an array of nv scalars, x; is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns 0 for
success and a non-zero value otherwise.

Usage:

retval = N_VLinearCombination(nv, c, X, z);

int N_VScaleAddMulti (int nv, realtype *c, N_Vector x, N_Vector *Y, N_Vector *Z.)

This routine scales and adds one vector to nv vectors with n elements:
Zji=¢jT; +yji, j=0,...,nu—1 ¢=0,...,n—1,

where c is an array of scalars, x is a vector, y; is a vector in the vector array Y, and z; is an output vector in the
vector array Z. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VScaleAddMulti(nv, c, x, Y, Z);

int N_VDotProdMulti (int nv, N_Vector x, N_Vector *Y, realtype *d)

This routine computes the dot product of a vector with nv vectors having n elements:

n—1
dj:inyj,ia j:(),...7n1]—1,
=0

where d is an array of scalars containing the computed dot products, x is a vector, and y; is a vector the vector
array Y. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VDotProdMulti(nv, x, Y, d);

6.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

int N_VLinearSumVectorArray (int nv, realtype a, N_Vector X, realtype b, N_Vector *Y, N_Vector *Z)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:
zji=axj; +by;;, 1=0,...,n—-1 7=0,...,nv—1,

where a and b are scalars, z; and y; are vectors in the vector arrays X and Y respectively, and z; is a vector in
the output vector array Z. The operation returns O for success and a non-zero value otherwise.

Usage:
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retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

int N_VScaleVectorArray (int nv, realtype *c, N_Vector *X, N_Vector *Z.)

This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

Zji5 = CjTji, iZO,...,n—l j:O,...,’I’LU—l,
where c is an array of scalars, x; is a vector in the vector array X, and z; is a vector in the output vector array Z.
The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VScaleVectorArray(nv, c, X, Z);

int N_VConstVectorArray (int nv, realtype c, N_Vector *Z)

This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:
zjs=c¢ 1=0,....n—1 j=0,...,nv—1,
where c is a scalar and z; is a vector in the vector array Z. The operation returns O for success and a non-zero

value otherwise.

Usage:

retval = N_VConstVectorArray(nv, c, Z);

int N_VWrmsNormVectorArray (int nv, N_Vector ¥*X, N_Vector *W, realtype *m)

This routine computes the weighted root mean square norm of each vector in a vector array:

= 1/2
2 .
m;= | E (xjiw; ;) , 7=0,....,nv—1,
i=0

where z; is a vector in the vector array X, w; is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

int N_VWrmsNormMaskVectorArray (int nv, N_Vector *X, N_Vector ¥*W, N_Vector id, realtype *m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

o1 1/2
1
my = | = (o HGd)* | L =0, =1,

=0

where H(id;) = 1if id; > 0 and is zero otherwise, x; is a vector in the vector array X, w; is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);
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int N_VScaleAddMultiVectorArray (int nv, int nsum, realtype *c, N_Vector *X, N_Vector **YY, N_Vector **77.)
This routine scales and adds a vector array of nv vectors to nsum other vector arrays:

Zkji = CkTji+ Ykji, ©=0,...,n—1 j=0,...,nv—-1, k=0,...,nsum—1

where c is an array of scalars, x; is a vector in the vector array X, ¥, ; is a vector in the array of vector arrays Y7,
and zy, ; is an output vector in the array of vector arrays ZZ. The operation returns 0 for success and a non-zero
value otherwise.

Usage:

retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

int N_VLinearCombinationVectorArray (int nv, int nsum, realtype *c, N_Vector **XX, N_Vector *Z)
This routine computes the linear combination of nsum vector arrays containing nv vectors:

nsum—1

Zji = E CeTk 5,0y i:O,...,n—l j:O,...,nU—L
k=0

where ¢ is an array of scalars, xj, ; is a vector in array of vector arrays XX, and z;; is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns O for success and a non-zero value otherwise.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

6.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

realtype N_VDotProdLocal (N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

Niocal —1
d= E TiYis
1=0

where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

realtype N_VMaxNormLocal (N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m= max |z,
0<i<niocal

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications).

Usage:
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m = N_VMaxNormLocal(x);

realtype N_VMinLocal (N_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m= min 1z,
0<i<niocal

where 1ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

realtype N_VL1NormLocal (N_Vector x)
This routine computes the MPI task-local portion of the /; norm of the N_Vector x:

Niocal —1

=0

where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

n = N_VL1NormLocal (x);

realtype N_VWSqrSumLocal (N_Vector x, N_Vector w)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

Niocal —1

s= > (zw)?

i=0

where 1ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:
s = N_VWSqrSumLocal(x, w);

realtype N_VWSqrSumMaskLocal (N_Vector x, N_Vector w, N_Vector id)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

Niocal—1
m= Y (zawH(id;))?
i=0
where
1 0
H(a) _ o >
0 <0

and nyecqr corresponds to the number of components in the vector on this MPI task (or njycq; = n for MPI-
unaware applications).

Usage:
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s = N_VWSqrSumMaskLocal(x, w, id);

booleantype N_VInvTestLocal (N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

1
zi=—,1=0,...,Mocar — 1
T

where ny,.q; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:

t = N_VInvTestLocal (x);

booleantype N_VConstrMaskLocal (N_Vector ¢, N_Vector X, N_Vector m)

Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
r, < 0 if ¢ =-2,
ZT; S 0 if C; = —1.

for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

realtype N_VMinQuotientLocal (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by term-wise dividing num; by denom;, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotientLocal (num, denom);

6.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

int N_VDotProdMultiLocal (int nv, N_Vector x, N_Vector *Y, realtype *d)
This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors y;:
Niocal —1

dj = Z ZiYji, J=0,...,nv—1,
i=0
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where d is an array of scalars containing the computed dot products, x is a vector, y; is a vector in the vector array
Y, and ny,cq; corresponds to the number of components in the vector on this MPI task. The operation returns 0
for success and a non-zero value otherwise.

Usage:

retval = N_VDotProdMultilLocal(nv, x, Y, d);

int N_VDotProdMultiAllReduce (int nv, N_Vector X, realtype *d)

This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)
where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns 0 for success and a non-zero value otherwise.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);

6.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

int N_VBufSize (N_Vector x, sunindextype *size)
This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:
flag = N_VBufSize(x, &buf_size)

int N_VBufPack (N_Vector x, void *buf)

This routine fills the exchange buffer buf with the vector data in x.

Usage:
flag = N_VBufPack(x, &buf)
int N_VBufUnpack (N_Vector x, void *buf)

This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)
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6.3 NVECTOR functions used by IDAS

In Table 6.2 below, we list the vector functions used in the N_Vector module used by the IDAS package. The table
also shows, for each function, which of the code modules uses the function. The IDAS column shows function usage
within the main integrator module, while the remaining columns show function usage within the IDALS linear solvers

interface, and the IDABBDPRE preconditioner module.

At this point, we should emphasize that the IDAS user does not need to know anything about the usage of vector
functions by the IDAS code modules in order to use IDAS. The information is presented as an implementation detail
for the interested reader.

Special cases (numbers match markings in table):

Table 6.2: List of vector functions usage by IDAS code modules

IDAS

IDALS

IDABBDPRE IDAA

N_VGetVectorID()
N_VGetLength()
N_VClone()
N_VCloneEmpty ()
N_VDestroy()
N_VCloneVectorArray ()
N_VDestroyVectorArray ()
N_VSpace()
N_VGetArrayPointer ()
N_VSetArrayPointer()
N_VLinearSum()
N_VConst()

N_VProd()

N_VDiv()

N_VScale()

N_VAbs ()

N_VInv()
N_VAddConst ()
N_VMaxNorm()
N_VWrmsNorm()
N_VMin()
N_VMinQuotient()
N_VConstrMask()
N_VWrmsNormMask ()
N_VCompare ()
N_VLinearCombination()
N_VScaleAddMulti()
N_VDotProdMulti()

N_VLinearSumVectorArray ()

N_VScaleVectorArray()
N_VConstVectorArray ()
N_VWrmsNormVectorArray ()

N_VWrmsNormMaskVectorArray ()
N_VScaleAddMultiVectorArray ()
N_VLinearCombinationVectorArray ()

Fo I \S R

>

1. These routines are only required if an internal difference-quotient routine for constructing SUNMATRIX DENSE

or SUNMATRIX BAND Jacobian matrices is used.
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2. This routine is optional, and is only used in estimating space requirements for IDAS modules for user feedback.

3. The optional function N_VDotProdMulti is only used when Classical Gram-Schmidt is enabled with SPGMR
or SPFGMR. The remaining operations from Tables §6.2.2 and §6.2.3 not listed above are unused and a user-
supplied N_Vector module for IDAS could omit these operations.

4. This routine is only used when an iterative or matrix iterative SUNLinearSolver module is supplied to IDAS.

Of the functions listed in §6.2, N_VDotProd() N_VWL2Norm(), N_VL1Norm(), N_VInvTest (), and N_VGetCommu-
nicator() are not used by IDAS. Therefore a user-supplied N_Vector module for IDAS could omit these functions
(although some may be needed by SUNNonlinearSolver or SUNLinearSolver modules).

6.4 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of an N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to link to
is libsundials_nvecserial.lib where .1ib is typically . so for shared libraries and .a for static libraries.

6.4.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)

This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector content
structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial) (v->content) )

NV_OWN_DATA_S(v)

Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data.
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Implementation:

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

NV_LENGTH_S (v)

Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_1len to be the length of v. On the other hand, the call NV_-
LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

NV_Ith_S(v, 1)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,1) sets r to be the value of the i-th component of v.
The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

6.4.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in §6.2.1, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Serial (e.g. N_-
VDestroy_Serial). All the standard vector operations listed in §6.2.1 with the suffix _Serial appended are callable
via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:
N_Vector N_VNew_Serial (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.
N_Vector N_VNewEmpty_Serial (sunindextype vec_length, SUNContext sunctx)
This function creates a new serial N_Vector with an empty (NULL) data array.
N_Vector N_VMake_Serial (sunindextype vec_length, realtype *v_data, SUNContext sunctx)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)
void N_VPrint_Serial (N_Vector v)
This function prints the content of a serial vector to stdout.
void N_VPrintFile_Serial (V_Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector
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using N_VCIlone (). This guarantees that the new vectors will have the same operations enabled/disabled as cloned

vectors inherit the same enable/disable options as the vector they are cloned, from while vectors created with N_-

VNew_Serial () will have the default settings for the NVECTOR_SERIAL module.

int N_VEnableFusedOps_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Serial (NV_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Serial (NV_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableDotProdMulti_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the serial
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the serial
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Serial (\N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Serial (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Serial (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector arrays
operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearCombinationVectorArray_Serial (\V_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = NV_DATA_S(v), or equivalently v_data = N_VGetArrayPointer(v), and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v, i) within the loop.

e N_VNewEmpty_Serial(), N_VMake_Serial(), and N_VCloneVectorArrayEmpty_Serial() set the field
own_data to SUNFALSE. The functions N_VDestroy_Serial() and N_VDestroyVectorArray_Serial()
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will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than one
N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
length.

6.4.3 NVECTOR_SERIAL Fortran Interface

The NVECTOR_SERIAL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use fnvec-
tor_serial_mod, and linking to the library 1ibsundials_fnvectorserial_mod.1ib in addition to the C library.
For details on where the library and module file fnvector_serial_mod.mod are installed see §11. We note that the
module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the libsundials_-
fnvectorserial_mod library.

6.5 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPL
It defines the content field of an N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library to link
to is libsundials_nvecparallel.lib where .1ib is typically .so for shared libraries and . a for static libraries.

6.5.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content structure
of type struct N_VectorContent_Parallel.

Implementation:
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#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel) (v->content) )

NV_OWN_DATA_P(v)

Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

NV_DATA_P(v)

The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the local_data
for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the pointer
v_data into data.

Implementation:

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

NV_LOCLENGTH_P (v)
The assignment v_1len = NV_LOCLENGTH_P(v) sets v_l1en to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be 11len_v.

Implementation:

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

NV_COMM_P(v)

This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

NV_Ith_P(v, i)

This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,1i) sets r to be the value of the i-th component of the local part of v.
The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.
Here i ranges from O to n — 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )
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6.5.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in §6.2. Their
names are obtained from the generic names by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,

SUNContext sunctx)

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length, realtype

*v_data, SUNContext sunctx)

This function creates and allocates memory for a parallel vector with user-provided data array.
(This function does not allocate memory for v_data itself.)

sunindextype N_VGetLocalLength_Parallel (N_Vector v)

This function returns the local vector length.

void N_VPrint_Parallel (N_Vector v)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel (N _Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone (). This guarantees that the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from, while vectors created with
N_VNew_Parallel () will have the default settings for the NVECTOR_PARALLEL module.
int N_VEnableFusedOps_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Parallel (\N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parallel
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is ® for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_Parallel (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parallel
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parallel
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Parallel (NV_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Parallel (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the local component
array via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_P(v), and then access
v_data[i] within the loop than it is to use NV_Ith_P(v,i) within the loop.

e N_VNewEmpty_Parallel(), N_VMake_Parallel(), and N_VCloneVectorArrayEmpty_Parallel() set
the field own_data to SUNFALSE. The routines N_VDestroy_Parallel() and N_VDestroyVectorArray_-
Parallel () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efliciency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.5.3 NVECTOR_PARALLEL Fortran Interface

The NVECTOR_PARALLEL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_parallel_mod Fortran module defines interfaces to all NVECTOR_PARALLEL C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Parallel is interfaced as FN_VNew_Parallel.

The Fortran 2003 NVECTOR_PARALLEL interface module can be accessed with the use statement, i.e. use fn-
vector_parallel_mod, and linking to the library 1ibsundials_fnvectorparallel_mod.1lib in addition to the
C library. For details on where the library and module file fnvector_parallel_mod.mod are installed see §11. We
note that the module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the
libsundials_fnvectorparallel_mod library.
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6.6 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content field
of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous data array,
a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on the vector
are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module library to link to
is 1ibsundials_nvecopenmp.lib where .1ib is typically .so for shared libraries and .a for static libraries. The
Fortran module file to use when using the Fortran 2003 interface to this module is fnvector_openmp_mod.mod.

6.6.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP (v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP (v) sets v_cont to be a pointer to the OpenMP N_Vector content
structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP) (v->content) )

NV_OWN_DATA_OMP (v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

NV_DATA_OMP (v)

The assignment v_data = NV_DATA_OMP (v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:
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#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

NV_LENGTH_OMP (v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP (V) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

NV_NUM_THREADS_OMP (v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP (v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_OMP (v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

NV_Ith_OMP(v, i)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.
The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

6.6.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _OpenMP (e.g. N_-
VDestroy_OpenMP). All the standard vector operations listed in §6.2 with the suffix _OpenMP appended are callable
via the Fortran 2003 interface by prepending an F’ (e.g. “'FN_VDestroy_OpenMP ").

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP (sunindextype vec_length, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP (sunindextype vec_length, realtype *v_data, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

6.6. The NVECTOR_OPENMP Module 233



User Documentation for IDAS, v5.5.1

void N_VPrint_OpenMP (N_Vector v)

This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP (N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenlMP (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenlMP () will
have the default settings for the NVECTOR_OPENMP module.
int N_VEnableFusedOps_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the OpenMP
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is 8 for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormMaskVectorArray_OpenMP (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMultiVectorArray_OpenMP (N _Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.
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int N_VEnableLinearCombinationVectorArray_OpenMP (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_OMP(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_OMP (v, i) within the loop.

e N_VNewEmpty_OpenMP (), N_VMake_OpenMP(), and N_VCloneVectorArrayEmpty_OpenMP() set the field
own_data to SUNFALSE. The functions N_VDestroy_OpenMP() and N_VDestroyVectorArray_OpenMP ()
will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

* To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.6.3 NVECTOR_OPENMP Fortran Interface

The NVECTOR_OPENMP module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenlP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use fnvec-
tor_openmp_mod, and linking to the library libsundials_fnvectoropenmp_mod.1lib in addition to the C library.
For details on where the library and module file fnvector_openmp_mod.mod are installed see §11.

6.7 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library to link
tois libsundials_nvecpthreads.lib where .1ib is typically . so for shared libraries and . a for static libraries.
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6.7.1 NVECTOR_PTHREADS accessor macros
The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT (v)

This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector content
structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads) (v->content) )

NV_OWN_DATA_PT(v)

Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

NV_DATA_PT(v)

The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

NV_LENGTH_PT(v)

Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

NV_NUM_THREADS_PT(v)

Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

NV_Ith_PT(v, i)

This macro gives access to the individual components of the dara array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,1i) sets r to be the value of the i-th component of v.
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The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

6.7.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Pthreads (e.g.
N_VDestroy_Pthreads). All the standard vector operations listed in §6.2 are callable via the Fortran 2003 interface
by prepending an F’ (e.g. “'FN_VDestroy_Pthreads ). The module NVECTOR_PTHREADS provides the following
additional user-callable routines:
N_Vector N_VNew_Pthreads (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.
N_Vector N_VNewEmpty_Pthreads (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads (sunindextype vec_length, realtype *v_data, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)

void N_VPrint_Pthreads (V_Vecror v)

This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads (V_Vector v, FILE *outfile)

This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads (),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VCIone (). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads () will have the default settings for the NVECTOR_PTHREADS module.

int N_VEnableFusedOps_Pthreads (N_Vecror v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the Pthreads
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Pthreads (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is 8 for success and -1 if the input vector or its ops structure
are NULL.
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int N_VEnableDotProdMulti_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormVectorArray_Pthreads (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the Pthreads vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Pthreads (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Pthreads(/N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the Pthreads vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_PT(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,1i) within the loop.

e N_VNewEmpty_Pthreads(), N_VMake_Pthreads(), and N_VCloneVectorArrayEmpty_Pthreads() set
the field own_data to SUNFALSE. The functions N_VDestroy_Pthreads() and N_VDestroyVectorArray_-
Pthreads () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.
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6.7.3 NVECTOR_PTHREADS Fortran Interface

The NVECTOR_PTHREADS module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.

The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use fn-
vector_pthreads_mod, and linking to the library 1libsundials_fnvectorpthreads_mod.1lib in addition to the
C library. For details on where the library and module file fnvector_pthreads_mod.mod are installed see §11.

6.8 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating ownership
of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
booleantype own_parvector;
realtype *data;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to be included when using this module is nvector_parhyp.h. The installed module library to link to
is libsundials_nvecparhyp.lib where .1ib is typically . so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member variables.
Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

6.8.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in §6.2 except for N_VSe-
tArrayPointer() and N_VGetArrayPointer () because accessing raw vector data is handled by low-level HYPRE
functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When access to raw vector
data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to access the data. Usage
examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph. c example programs for CVODE and the
ark_diurnal_kry_ph.c example program for ARKODE.

The names of parhyp methods are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional user-
callable routines:

N_Vector N_VNewEmpty_ParHyp (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.
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N_Vector N_VMake_ParHyp (hypre_ParVector *x, SUNContext sunctx)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp (N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

void N_VPrint_ParHyp (IV_Vector v)

This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp (N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_ParHyp () will
have the default settings for the NVECTOR_PARHYP module.
int N_VEnableFusedOps_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is O for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parhyp
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_ParHyp (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormMaskVectorArray_ParHyp (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleAddMultiVectorArray_ParHyp (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, booleantype tf)

Notes

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parhyp vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

* When there is a need to access components of an N_Vector_ParHyp v, itis recommended to extract the HYPRE

vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate HYPRE func-
tions.

N_VNewEmpty_ParHyp (), N_VMake_ParHyp (), and N_VCloneVectorArrayEmpty_ParHyp() set the field
own_parvector to SUNFALSE. The functions N_VDestroy_ParHyp() and N_VDestroyVectorArray_-
ParHyp () will not attempt to delete an underlying HYPRE vector for any N_Vector with own_parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.9 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an MPI
communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {

e

sunindextype local_length;
sunindextype global_length;
booleantype own_data;

Vec *pvec;

MPI_Comm comm;

The header file to be included when using this module is nvector_petsc.h. The installed module library to link to
is libsundials_nvecpetsc.lib where .1ib is typically . so for shared libraries and . a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member variables.
Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.
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6.9.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in §6.2 except for N_VGe-
tArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used with SUNDIALS Fortran
interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first, and then use
PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffice
_Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following additional user-callable
routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)
This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It is
used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great caution.
N_Vector N_VMake_Petsc(Vec *pvec, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.
Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.
By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_Petsc () will
have the default settings for the NVECTOR_PETSC module.
int N_VEnableFusedOps_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the PETSc
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the PETSc
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the PETSc vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the PETSc vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector_Petsc v, it is recommeded to extract the PETSc
vector via x_vec = N_VGetVector_Petsc(v); and then access components using appropriate PETSc func-
tions.

e The functions N_VNewEmpty_Petsc(), N_VMake_Petsc(), and N_VCloneVectorArrayEmpty_Petsc()
set the field own_data to SUNFALSE. The routines N_VDestroy_Petsc() and N_VDestroyVectorArray_-
Petsc() will not attempt to free the pointer pvec for any N_Vector with own_data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

* To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda

{
sunindextype length;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;

SUNCudaExecPolicy* stream_exec_policy;

(continues on next page)
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SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};
typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, and a private data structure which holds additonal members
that should not be accessed directly.

When instantiated with N_VNew_Cuda (), the underlying data will be allocated on both the host and the device. Al-
ternatively, a user can provide host and device data arrays by using the N_VMake_Cuda () constructor. To use CUDA
managed memory, the constructors N_VNewManaged_Cuda () and N_VMakelManaged_Cuda () are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewl/i th-
MemHelp_Cuda (). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library 1libsundials_nveccuda.
1ib. The extension, .1ib, is typically . so for shared libraries and .a for static libraries.

6.10.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:
realtype *N_VGetHostArrayPointer_Cuda(N_Vecror v)

This function returns pointer to the vector data on the host.

realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in §6.2, §6.2.2,
§6.2.3, and §6.2.4, except for N_VSetArrayPointer (), and, if using unmanaged memory, N_VGetArrayPointer().
As such, this vector can only be used with SUNDIALS direct solvers and preconditioners when using managed mem-
ory. The NVECTOR_CUDA module provides separate functions to access data on the host and on the device for the
unmanaged memory use case. It also provides methods for copying from the host to the device and vice versa. Usage
examples of NVECTOR_CUDA are provided in example programs for CVODE [41].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:
N_Vector N_VNew_Cuda (sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.
N_Vector N_VNewManaged_Cuda (sunindextype vec_length, SUNContext sunctx)

This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in managed
memory.
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N_Vector N_VNewWithMemHelp_Cuda (sunindextype length, booleantype use_managed_mem, SUNMemoryHelper
helper, SUNContext sunctx)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Cuda (sunindextype vec_length, SUNContext sunctx)
This function creates a new CUDA N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Cuda (sunindextype vec_length, realtype *h_vdata, realtype *d_vdata, SUNContext sunctx)

This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda (sunindextype vec_length, realtype *vdata, SUNContext sunctx)

This function creates a CUDA N_Vector with a user-supplied managed memory data array.

N_Vector N_VMakeWithManagedAllocator_Cuda (sunindextype length, void *(*allocfn)(size_t size), void
(*freefn)(void *ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to provide
a corresponding free function as well. The memory allocated by the allocator function must behave like CUDA
managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy *stream_exec_policy,
SUNCudaExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction CUDA kernels. By default the vector is setup to use the SUNCudaThreadDirectExecPol-
icy() and SUNCudaBlockReduceAtomicExecPolicy (). Any custom execution policy for reductions must
ensure that the grid dimensions (number of thread blocks) is a multiple of the CUDA warp size (32). See §6.10.2
below for more information about the SUNCudaExecPolicy class. Providing NULL for an argument will result
in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution
policy. It is strongly recommended that this function is called immediately after constructing the vector, and
any subsequent vector be created by cloning to ensure consistent execution policies across vectors

realtype *N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.
realtype *N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.
void N_VPrint_Cuda (N Vector v)
This function prints the content of a CUDA vector to stdout.
void N_VPrintFile_Cuda (N _Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda (), enable/disable

the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
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the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda () will
have the default settings for the NVECTOR_CUDA module.
int N_VEnableFusedOps_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Cuda(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableDotProdMulti_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Cuda (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the CUDA vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is ® for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

* When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use functions N_-
VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda (). However, when using managed
memory, the function N_VGetArrayPointer () may also be used.

» To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.
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6.10.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: : cuda: : ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNCudaExecPolicy class is defined as

typedef sundials::cuda::ExecPolicy SUNCudaExecPolicy

where the sundials: :cuda: :ExecPolicy class is defined in the header file sundials_cuda_policies.hpp, as
follows:

class ExecPolicy

{

public:
ExecPolicy(cudaStream_t stream = 0) : stream_(stream) { }
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual const cudaStream_t* stream() const { return (&stream_); }
virtual ExecPolicy* clone() const = 0;
ExecPolicy* clone_new_stream(cudaStream_t stream) const {
ExecPolicy* ex = clone();
ex->stream_ = sStream;
return ex;
}
virtual bool atomic() const { return false; }
virtual ~ExecPolicy() {}
protected:
cudaStream_t stream_;
1

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :cuda: : ThreadDirectExecPolicy (aka in the global
namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, cudaStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)
{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)
{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{

/* ceil(n/m) = floor((n + m - 1) / m) */

return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t /*numliorkUnits*/ = 0, size_t /*gridDim*/ = Q) const

(continues on next page)
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{
return blockDim_;
}
virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;
};

In total, SUNDIALS provides 3 execution policies:

SUNCudaThreadDirectExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a CUDA stream is provided, it will be used to execute the kernel.

SUNCudaGridStrideExecPolicy (const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a CUDA stream is provided, it
will be used to execute the kernel.

SUNCudaBlockReduceExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim)
can be set to any value greater than 0. If it is set to O, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a CUDA stream is provided, it will be used to execute
the kernel.

SUNCudaBlockReduceAtomicExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a CUDA stream is provided,
it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate(&stream) ;
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.
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6.11 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library [1]. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are already
familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The vector
content layout is as follows:

struct _N_VectorContent_Hip

{
sunindextype length;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */
};

typedef struct _N_VectorContent_Hip *N_VectorContent Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. itis in charge
of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy implementations
that control how the HIP kernels are launched for streaming and reduction vector kernels, and a private data structure
which holds additonal members that should not be accessed directly.

When instantiated with N_VNew_Hip (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Hip () constructor. To use managed
memory, the constructors N_VNewManaged_Hip () and N_VMakeManaged_Hip () are provided. Additionally, a user-
defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewlVi thMemHelp_-
Hip (). Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library libsundials_nvechip.lib.
The extension, .11ib, is typically . so for shared libraries and .a for static libraries.

6.11.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:
realtype *N_VGetHostArrayPointer_Hip (N_Vector v)
This function returns pointer to the vector data on the host.
realtype *N_VGetDeviceArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the device.
booleantype N_VIsManagedMemory_Hip (N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.
The NVECTOR_HIP module defines implementations of all standard vector operations defined in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VSetArrayPointer (). The names of vector operations are obtained from those in §6.2,

§6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Hip (e.g. N_VDestroy_Hip()). The module NVECTOR_HIP
provides the following additional user-callable routines:
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N_Vector N_VNew_Hip (sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both the
host and device.

N_Vector N_VNewManaged_Hip (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Hip (sunindextype length, booleantype use_managed_mem, SUNMemoryHelper

helper, SUNContext sunctx)

This function creates a new HIP N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing mem-
ory.

N_Vector N_VNewEmpty_Hip (sunindextype vec_length, SUNContext sunctx)
This function creates a new HIP N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip (sunindextype vec_length, realtype *h_vdata, realtype *d_vdata, SUNContext sunctx)

This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Hip (sunindextype vec_length, realtype *vdata, SUNContext sunctx)

This function creates a HIP N_Vector with a user-supplied managed memory data array.
The module NVECTOR_HIP also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Hip (N_Vector v, SUNHipExecPolicy *stream_exec_policy, SUNHipExecPolicy
*reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction HIP kernels. By default the vector is setup to use the SUNHipThreadDirectExecPolicy ()
and SUNHipBlockReduceExecPolicy (). Any custom execution policy for reductions must ensure that the grid
dimensions (number of thread blocks) is a multiple of the HIP warp size (32 for NVIDIA GPUs, 64 for AMD
GPUs). See §6.11.2 below for more information about the SUNHipExecPolicy class. Providing NULL for an
argument will result in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution
policy. It is strongly recommended that this function is called immediately after constructing the vector, and
any subsequent vector be created by cloning to ensure consistent execution policies across vectors*®

realtype *N_VCopyToDevice_Hip(N_Vector v)
This function copies host vector data to the device.
realtype *N_VCopyFromDevice_Hip (N_Vector v)
This function copies vector data from the device to the host.
void N_VPrint_Hip(N_Vector v)
This function prints the content of a HIP vector to stdout.
void N_VPrintFile_Hip (/N_Vector v, FILE *outfile)
This function prints the content of a HIP vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following additional

user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip (), enable/disable the
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desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-

VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit

the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Hip () will have

the default settings for the NVECTOR_HIP module.

int N_VEnableFusedOps_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the HIP vector. The return value is ® for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableDotProdMulti_Hip(N_Vecror v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the HIP
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the HIP
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the HIP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnablelWrmsNormMaskVectorArray_Hip (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Hip (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableLinearCombinationVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the HIP vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector_Hip, v, it is recommeded to use functions N_-
VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when using managed
memory, the function N_VGetArrayPointer () may also be used.
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» To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one N_-
Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.11.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: :hip: :ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNHipExecPolicy class is defined as

typedef sundials::hip::ExecPolicy SUNHipExecPolicy

where the sundials: :hip: :ExecPolicy class is defined in the header file sundials_hip_policies.hpp, as fol-
lows:

class ExecPolicy
{
public:
ExecPolicy(hipStream_t stream = 0) : stream_(stream) { }
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const =
virtual const hipStream_t* stream() const { return (&stream_); }
virtual ExecPolicy* clone() const = 0;
ExecPolicy* clone_new_streamChipStream_t stream) const {
ExecPolicy* ex = clone();
ex->stream_ = stream;
return ex;

[
(==

}
virtual bool atomic() const { return false; }
virtual ~ExecPolicy() {}
protected:
hipStream_t stream_;

};

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :hip::ThreadDirectExecPolicy (aka in the global
namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, hipStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)
{1

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const

(continues on next page)
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/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t /*numliorkUnits*/ = 0, size_t /*gridDim*/ = Q) const
{

return blockDim_;

}
virtual ExecPolicy* clone() const
' return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;
3

In total, SUNDIALS provides 4 execution policies:

SUNHipThreadDirectExecPolicy (const size_t blockDim, const hipStream_t stream = 0)

Maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a HIP stream is provided, it will be used to execute the kernel.

SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a HIP stream is provided, it will
be used to execute the kernel.

SUNHipBlockReduceExecPolicy (const size_t blockDim, const hipStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can
be set to any value greater than 0. If it is set to O, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a HIP stream is provided, it will be used to execute
the kernel.

SUNHipBlockReduceAtomicExecPolicy(const size_t blockDim, const hipStream_t stream = 0)

Is for kernels performing a reduction across indvidual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a HIP stream is provided, it
will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&stream) ;
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.
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6.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer. At
present the only supported SYCL compiler is the DPC++ (Intel one API) compiler. This module allows for SUNDIALS
vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with SYCL and
GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl

{
sunindextype length;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl: :queue® queue;
void* priv; /* 'private' data */
};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Syc1 (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Sycl () constructor. To use managed
(shared) memory, the constructors N_VNewManaged_Sycl () and N_VMakeManaged_Sycl () are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewl/i th-
MemHelp_Sycl(). Details on each of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to link to is 1ibsundi-
als_nvecsycl.lib. The extension .1ib is typically . so for shared libraries .a for static libraries.

6.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and §6.2.4,
except for N_VDotProdMulti (), N_ViirmsNormVectorArray (), N_VWirmsNormMaskVectorArray () as support for
arrays of reduction vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementa-
tion in the future. The names of vector operations are obtained from those in the aforementioned sections by appending
the suffix _Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:
N_Vector N_VNew_Sycl (sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)

This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.
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N_Vector N_VNewManaged_Sycl (sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in man-
aged (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Syc1 (sunindextype length, realtype *h_vdata, realtype *d_vdata, sycl::queue *Q, SUNContext

sunctx)

This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl (sunindextype length, realtype *vdata, sycl::queue *Q, SUNContext sunctx)

This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl (sunindextype length, booleantype use_managed_mem, SUNMemoryHelper
helper, sycl::queue *Q, SUNContext sunctx)

This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl ()
This function creates a new N_Vector where the members of the content structure have not been allocated. This

utility function is used by the other constructors to create a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host and device and
copying data between the two memory spaces. Note the generic NVECTOR operations N_VGetArrayPointer () and
N_VSetArrayPointer () are mapped to the corresponding HostArray functions given below. To ensure memory
coherency, a user will need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host
and device, unless managed (shared) memory is used.

realtype *N_VGetHostArrayPointer_Sycl (N_Vector v)
This function returns a pointer to the vector host data array.
realtype *N_VGetDeviceArrayPointer_Sycl (N_Vector v)
This function returns a pointer to the vector device data array.
void N_VSetHostArrayPointer_Sycl (realtype *h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.
void N_VSetDeviceArrayPointer_Sycl (realtype *d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.
void N_VCopyToDevice_Sycl (N_Vector v)
This function copies host vector data to the device.
void N_VCopyFromDevice_Sycl (N_Vector v)
This function copies vector data from the device to the host.
booleantype N_VIsManagedMemory_Sycl (N_Vector v)

This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it returns
SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on a
device.

int N_VSetKernelExecPolicy_Sycl (N_Vector v, SUNSyclExecPolicy *stream_exec_policy, SUNSyclExecPolicy
*reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction kernels. By default the vector is setup to use the SUNSyclThreadDirectExecPolicy () and
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SUNSyclBlockReduceExecPolicy (). See §6.12.2 below for more information about the SUNSyclExecPol-
icy class.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any subsequent
vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is used,
a user may need to call N_VCopyFromDevice_Sycl () to ensure consistency between the host and device array.
void N_VPrint_Sycl (N_Vector v)

This function prints the host data array to stdout.

void N_VPrintFile_Sycl (N_Vector v, FILE *outfile)
This function prints the host data array to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To ensure
consistency across vectors it is recommended to first create a vector with one of the above constructors, enable/disable
the desired operations on that vector with the functions below, and then use this vector in conjunction with N_VClone ()
to create any additional vectors. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created by any
of the constructors above will have the default settings for the NVECTOR_SYCL module.
int N_VEnableFusedOps_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the SYCL
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.
int N_VEnableLinearSumVectorArray_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the SYCL
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_Sycl (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMultiVectorArray_Sycl (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector arrays
operation in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.
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int N_VEnableLinearCombinationVectorArray_Sycl (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the SYCL vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

* When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use N_VGetDe-
viceArrayPointer () to access the device array or N_VGetArrayPointer () for the host array. When using
managed (shared) memory, either function may be used. To ensure memory coherency, a user may need to call
the CopyTo or CopyFrom functions as necessary to transfer data between the host and device, unless managed
(shared) memory is used.

» To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: :sycl: :ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNSyclExecPolicy class is defined as

typedef sundials::sycl::ExecPolicy SUNSyclExecPolicy

where the sundials: :sycl::ExecPolicy class is defined in the header file sundials_sycl_policies.hpp, as
follows:

class ExecPolicy

{

public:
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;
virtual ExecPolicy* clone() const = 0;
virtual ~ExecPolicy() {}

};

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors. In
the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per group).
The gridSize is the number of local work groups so the global work-group range in a one-dimensional nd_range is
blockSize * gridSize (total number of threads). All vector kernels are written with a many-to-one mapping where
work units (vector elements) are mapped in a round-robin manner across the global range. As such, the blockSize
and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :sycl: :ThreadDirectExecPolicy (aka in the global
namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)

(continues on next page)
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{3

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)
{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}
virtual ExecPolicy* clone() const
' return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;
3

SUNDIALS provides the following execution policies:
SUNSyclThreadDirectExecPolicy (const size_t blockDim)

Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread). Based on the local work-group range (number of threads per group, blockSize) the
number of local work-groups (gridSize) is computed so there are enough work-items in the global
work-group range ( total number of threads, blockSize * gridSize) for one work unit per work-
item (thread).

SUNSyclGridStrideExecPolicy (const size_t blockDim, const size_t gridDim)

Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value. In
this case the global work-group range (total number of threads, blockSize * gridSize) may be
less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy (const size_t blockDim)

Is for kernels performing a reduction, the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value or the
gridSize may be set to ® in which case the global range is chosen so that there are enough threads
for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduce-
ExecPolicy where the default blockDim is determined by querying the device for the max_work_group_size. User
may specify different policies by constructing a new SyclExecPolicy and attaching it with N_VSetKernelExecPol-
icy_Sycl(). For example, a policy that uses 128 work-items (threads) per group can be created and attached like so:
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N_Vector v = N_VNew_Sycl(length, SUNContext sunctx);
SUNSyclThreadDirectExecPolicy thread_direct(128);
SUNSyclBlockReduceExecPolicy block_reduce(128);

flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.13 The NVECTOR_RAJA Module

The NVECTOR_RAIJA module is an experimental NVECTOR implementation using the RAJA hardware abstraction
layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD, NVIDIA, or Intel GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building this
vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environment, the
AMD ROCm HIP programming environment, or a compiler that supports the SYCL abstraction layer. When using the
AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can select which backend to compile
with by setting the SUNDTALS_RAJA_BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the CUDA,
HIP, and SYCL backends, RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not
used in this SUNDIALS release.

The vector content layout is as follows:

struct _N_VectorContent_Raja

{

sunindextype length;

booleantype own_data;

realtype* host_data;

realtype® device_data;

void* priv; /* 'private' data */
};

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Raja() constructor. To use managed
memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided. Details on each of
these constructors are provided below.

The header file to include when using this is nvector_raja.h. The installed module library to link to is 1ibsun-
dials_nveccudaraja.lib when using the CUDA backend, libsundials_nvechipraja.lib when using the HIP
backend, and libsundials_nvecsyclraja.lib when using the SYCL backend. The extension .lib is typically
. so for shared libraries . a for static libraries.
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6.13.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:
realtype *N_VGetHostArrayPointer_Raja(/N_Vector v)

This function returns pointer to the vector data on the host.

realtype *N_VGetDeviceArrayPointer_Raja(N_Vector v)

This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Raja(/N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAIJA module defines the implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and
§6.2.4, except for N_VDotProdMulti (), N_VWirmsNormVectorArray (), and N_VWrmsNormMaskVectorArray () as
support for arrays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVEC-
TOR_RAJA implementation in the future. Additionally, the operations N_VGetArrayPointer () and N_VSetArray-
Pointer() are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS direct
solvers and preconditioners. The NVECTOR_RAJA module provides separate functions to access data on the host and

on the device. It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_RAIJA are provided in some example programs for CVODE [41].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Raja
(e.g. N_VDestroy_Raja). The module NVECTOR_RAIJA provides the following additional user-callable routines:
N_Vector N_VNew_Raja (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.
N_Vector N_VNewManaged_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in managed
memory.
N_Vector N_VMake_Raja(sunindextype length, realtype *h_data, realtype *v_data, SUNContext sunctx)
This function creates an NVECTOR_RAIJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.
N_Vector N_VMakeManaged_Raja(sunindextype length, realtype *vdata, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.
N_Vector N_VNewWithMemHelp_Raja(sunindextype length, booleantype use_managed_mem, SUNMemoryHelper
helper, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.
N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.
void N_VCopyToDevice_Raja(N_Vector v)

This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(/N_Vector v)

This function copies vector data from the device to the host.
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void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vecror v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja (), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja() will
have the default settings for the NVECTOR_RAIJA module.

int N_VEnableFusedOps_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearSumVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the RAJA
vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Raja(/N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA vector.
The return value is ® for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector arrays
operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the RAJA vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an NVECTOR_RAJA vector, it is recommended to use func-
tions N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when using
managed memory, the function N_VGetArrayPointer () may also be used.

* To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.
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6.14 The NVECTOR_KOKKOS Module

New in version 6.4.0.

The NVECTOR_KOKKOS N_Vector implementation provides a vector data structure using Kokkos [31, 58] to sup-
port a variety of backends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library,
the module is also written in modern C++ (it requires C++14) as a header only library. To utilize this N_Vector
users will need to include nvector/nvector_kokkos.hpp. More instructions on building SUNDIALS with Kokkos
enabled are given in §11.1.4. For instructions on building and using Kokkos, refer to the Kokkos documentation.

6.14.1 Using NVECTOR_KOKKOS

The NVECTOR_KOKKOS module is defined by the Vector templated class in the sundials: :kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector,
public sundials::ConvertibleTo<N_Vector>

To use the NVECTOR_KOKKOS module, we construct an instance of the Vector class e.g.,

// Vector with extent length using the default execution space
sundials: :kokkos: :Vector<> x{length, sunctx};

// Vector with extent length using the Cuda execution Space
sundials: :kokkos: :Vector<Kokkos: :Cuda> x{length, sunctx};

// Vector based on an existing Kokkos::View
Kokkos: :View<> view{"a view", length};
sundials: :kokkos: :Vector<> x{view, sunctx};

// Vector based on an existing Kokkos::View for device and host

Kokkos: :View<Kokkos: :Cuda> device_view{"a view", length};

Kokkos: :View<Kokkos: :HostMirror> host_view{Kokkos::create_mirror_view(device_view)};
sundials: :kokkos: :Vector<> x{device_view, host_view, sunctx};

Instances of the Vector class are implicitly or explicitly (using the Convert () method) convertible to a N_Vector
e.g.,

sundials: :kokkos: :Vector<> x{length, sunctx};
N_Vector x2 = Xx; // implicit conversion to N_Vector
N_Vector x3 = x.Convert(); // explicit conversion to N_Vector

No further interaction with a Vector is required from this point, and it is possible to use the N_Vector API to operate
on X2 or x3.

Warning: N_VDestroy () should never be called on a N_Vector that was created via conversion from a sundi-
als: :kokkos: :Vector. Doing so may result in a double free.

The underlying Vector can be extracted from a N_Vector using GetVec() e.g.,
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auto x_vec = GetVec<>(x3);

6.14.2 NVECTOR_KOKKOS API

In this section we list the public API of the sundials: :kokkos: : Vector class.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = class
ExecutionSpace::memory_space>

class Vector : public sundials::impl::BaseN Vector, public sundials::ConvertibleTo<N_Vector>
Vector () = default
Default constructor — the vector must be copied or moved to.

Vector (size_type length, SUNContext sunctx)

Constructs a single Vector which is based on a 1D Kokkos: :View with the ExecutionSpace and Memo-
rySpace provided as template arguments.

Parameters
¢ length — length of the vector (i.e., the extent of the View)
* sunctx — the SUNDIALS simulation context object (SUNContext)

Vector (view_type view, SUNContext sunctx)

Constructs a single Vector from an existing Kokkos: :View. The View ExecutionSpace and MemoryS-
pace must match the ExecutionSpace and MemorySpace provided as template arguments.

Parameters
e view— A 1D Kokkos: :View
* sunctx —the SUNDIALS simulation context object (SUNContext)

Vector (view_type view, host_view_type host_view, SUNContext sunctx)

Constructs a single Vector from an existing Kokkos: :View for the device and the host. The Execution-
Space and MemorySpace of the device View must match the ExecutionSpace and MemorySpace provided
as template arguments.

Parameters
e view — A 1D Kokkos: :View for the device
* host_view — A 1D Kokkos: :View that is a Kokkos: :HostMirrror for the device view
* sunctx — the SUNDIALS simulation context object (SUNContext)
Vector (Vector &&that_vector) noexcept
Move constructor.
Vector (const Vector &that_vector)

Copy constructor. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

Vector &operator=(Vector &&rhs) noexcept
Move assignment.
Vector &operator=_const Vector &rhs)

Copy assignment. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.
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virtual ~Vector () = default;

Default destructor.
size_type Length()

Get the vector length i.e., extent (0).
view_type View()

Get the underlying Kokkos: View for the device.

host_view_type HostView()
Get the underlying Kokkos : View for the host.

operator N_Vector() override

Implicit conversion to a N_Vector.

operator N_Vector() const override

Implicit conversion to a N_Vector.

N_Vector Convert () override

Explicit conversion to a N_Vector.

N_Vector Convert () const override
Explicit conversion to a N_Vector.
template<class VectorType>
inline VectorType *GetVec (N_Vector v)
Get the Vector wrapped by a N_Vector.

void CopyToDevice (N_Vector v)

Copy the data from the host view to the device view with Kokkos: : deep_copy.

void CopyFromDevice (N_Vector v)

Copy the data to the host view from the device view with Kokkos: : deep_copy.
template<class VectorType>
void CopyToDevice (VectorType &v)

Copy the data from the host view to the device view with Kokkos: :deep_copy.
template<class VectorType>
void CopyFromDevice (VectorType &v)

Copy the data to the host view from the device view with Kokkos: :deep_copy.

6.15 The NVECTOR_OPENMPDEY Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEYV implementation defines the content field of the N_Vector to be a structure containing
the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the beginning of
a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of host and device
data arrays.

struct _N_VectorContent_OpenMPDEV

{
sunindextype length;

(continues on next page)
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(continued from previous page)

booleantype own_data;

realtype “host_data;

realtype “dev_data;
};

The header file to include when using this module is nvector_openmpdev.h. The installed module library to link to
is 1ibsundials_nvecopenmpdev.1lib where .1ib is typically . so for shared libraries and .a for static libraries.

6.15.1 NVECTOR_OPENMPDEY accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEYV vector.

NV_CONTENT_OMPDEV (v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVECTOR_OPENMPDEV
content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_OpenMPDEV) (v->content) )

NV_OWN_DATA_OMPDEV (v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first component of
the data on the host for the N_Vector v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )

NV_DATA_HOST_OMPDEV (v)

The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )

NV_DATA_DEV_OMPDEV (v)

The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the first compo-
nent of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV(v) = v_dev_data
sets the device component array of v to be v_dev_data by storing the pointer v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )

NV_LENGTH_OMPDEV (V)
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV (V) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.
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#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

6.15.2 NVECTOR_OPENMPDEY functions

The NVECTOR_OPENMPDEYV module defines OpenMP device offloading implementations of all vector operations
listed in §6.2, §6.2.2, §6.2.3, and §6.2.4, except for N_VSetArrayPointer (). As such, this vector cannot be used with
the SUNDIALS direct solvers and preconditioners. It also provides methods for copying from the host to the device
and vice versa.

The names of the vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suf-
fix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEYV provides the following
additional user-callable routines:

N_Vector N_VNew_OpenMPDEV (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.

N_Vector N_VNewEmpty_OpenMPDEV (sunindextype vec_length, SUNContext sunctx)
This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) data array.
N_Vector N_VMake_OpenMPDEV (sunindextype vec_length, realtype *h_vdata, realtype *d_vdata, SUNContext
sunctx)
This function creates an NVECTOR_OPENMPDEYV vector with user-supplied vector data arrays h_vdata and
d_vdata. This function does not allocate memory for data itself.
realtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the host data array.

realtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the device data array.

void N_VPrint_OpenMPDEV (N_Vector v)
This function prints the content of an NVECTOR_OPENMPDEYV vector to stdout.

void N_VPrintFile_OpenMPDEV (N_Vector v, FILE *outfile)
This function prints the content of an NVECTOR_OPENMPDEYV vector to outfile.

void N_VCopyToDevice_OpenMPDEV(N_Vector v)

This function copies the content of an NVECTOR_OPENMPDEYV vector’s host data array to the device data
array.

void N_VCopyFromDevice_OpenMPDEV (N _Vecior v)

This function copies the content of an NVECTOR_OPENMPDEYV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEYV module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMPDEV, enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone. This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMPDEV will
have the default settings for the NVECTOR_OPENMPDEYV module.

int N_VEnableFusedOps_OpenMPDEV (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the NVEC-
TOR_OPENMPDEYV vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.
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int N_VEnableLinearCombination_OpenMPDEV (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the NVEC-
TOR_OPENMPDEYV vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMulti_OpenMPDEV (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the NVECTOR_OPENMPDEYV vector. The return value is O for success and -1 if the input vector
or its ops structure are NULL.

int N_VEnableDotProdMulti_OpenMPDEV (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the NVEC-
TOR_OPENMPDEYV vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearSumVectorArray_OpenMPDEV (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the NVEC-
TOR_OPENMPDEYV vector. The return value is ® for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleVectorArray_OpenMPDEV(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVECTOR _-
OPENMPDEVY vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_OpenMPDEV(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the NVEC-
TOR_OPENMPDEYV vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
NVECTOR_OPENMPDEYV vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnablelirmsNormMaskVectorArray_OpenMPDEV (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the NVECTOR_OPENMPDEV vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableScaleAddMultiVectorArray_OpenMPDEV (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector

arrays operation in the NVECTOR_OPENMPDEYV vector. The return value is ® for success and -1 if the input
vector or its ops structure are NULL.

int N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the NVECTOR_OPENMPDEYV vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

Notes

* When looping over the components of an N_Vector v, it is most efficient to first obtain the component array via
h_data = N_VGetArrayPointer(v) for the host array or v_data = N_VGetDeviceArrayPointer(v) for
the device array, or equivalently to use the macros h_data = NV_DATA_HOST_OMPDEV (v) for the host array or
v_data = NV_DATA_DEV_OMPDEV(v) for the device array, and then access h_data[i] or v_data[i] within
the loop.
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* When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

e N_VNewEmpty_OpenMPDEV(), N_VMake_OpenMPDEV(), and N_VCloneVectorArrayEmpty_OpenMPDEV()
set the field own_data to SUNFALSE. The functions N_VDestroy_OpenMPDEV() and N_VDestroyVectorAr-
ray_OpenMPDEV () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointers.

* To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

6.16 The NVECTOR_TRILINOS Module

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The interface to
Tpetra is implemented in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class. This
class simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in the content field
of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long as the N_Vector object exists.

The Tpetra vector type in the sundials::trilinos: :nvector_tpetra: :TpetraVectorInterface class is de-
fined as:

typedef Tpetra::Vector<realtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified realtype as its scalar type, int as the local ordinal type, and
sunindextype as the global ordinal type. This type definition will use Tpetra’s default node type. Available Kokkos
node types as of the Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and CUDA. The default node
type is selected when building the Kokkos package. For example, the Tpetra vector will use a CUDA node if Tpetra
was built with CUDA support and the CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module library to link to
is libsundials_nvectrilinos.lib where .1ib is typically . so for shared libraries and . a for static libraries.

6.16.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VGetArrayPointer() and N_VSetArrayPointer (). As such, this vector cannot be used
with the SUNDIALS direct solvers and preconditioners. When access to raw vector data is needed, it is recommended
to extract the Trilinos Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
NVECTOR_TRILINOS are provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2 by appending the suffice _Trilinos (e.g. N_VDe-
stroy_Trilinos). Vector operations call existing Tpetra: : Vector methods when available. Vector operations spe-
cific to SUNDIALS are implemented as standalone functions in the namespace sundials: :trilinos: :nvector_-
tpetra: :TpetraVector, located in the file SundialsTpetraVectorKernels.hpp. The module NVECTOR_-
TRILINOS provides the following additional user-callable routines:

Teuchos::RCP<vector_type> N_VGetVector_Trilinos (N_Vector v)

This C++ function takes an N_Vector as the argument and returns a reference counting pointer to the underlying
Tpetra vector. This is a standalone function defined in the global namespace.
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N_Vector N_VMake_Trilinos (Teuchos::RCP<vector_type> v)

This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a user-provided
Tpetra vector. This is a standalone function defined in the global namespace.

Notes

* The template parameter vector_type should be set as:

typedef sundials::trilinos::nvector_tpetra::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in SUNDIALS.

e When there is a need to access components of an N_Vector_Trilinos v, it is recommeded to extract the
Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access components using the ap-
propriate Trilinos functions.

* The functions N_VDestroy_Trilinos and N_VDestroyVectorArray_Trilinos only delete the N_Vector
wrapper. The underlying Tpetra vector object will exist for as long as there is at least one reference to it.

6.17 The NVECTOR_MANYVECTOR Module

The NVECTOR_MANY VECTOR module is designed to facilitate problems with an inherent data partitioning within a
computational node for the solution vector. These data partitions are entirely user-defined, through construction of dis-
tinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MANY VEC-
TOR. Two potential use cases for this flexibility include:

A. Heterogenous computational architectures: for data partitioning between different computing resources on a
node, architecture-specific subvectors may be created for each partition. For example, a user could create
one GPU-accelerated component based on NVECTOR_CUDA, and another CPU threaded component based
on NVECTOR_OPENMP.

B. Structure of arrays (SOA) data layouts: for problems that require separate subvectors for each solution compo-
nent. For example, in an incompressible Navier-Stokes simulation, separate subvectors may be used for velocities
and pressure, which are combined together into a single NVECTOR_MANY VECTOR for the overall “solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANY VECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors that imple-
ment the minimum “standard” set of operations in §6.2.1. Additionally, NVECTOR_MANYVECTOR sets no limit
on the number of subvectors that may be attached (aside from the limitations of using sunindextype for indexing,
and standard per-node memory limitations). However, while this ostensibly supports subvectors with one entry each
(i.e., one subvector for each solution entry), we anticipate that this extreme situation will hinder performance due to
non-stride-one memory accesses and increased function call overhead. We therefore recommend a relatively coarse
partitioning of the problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MANY VECTOR. However, even at present we antici-
pate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.
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6.17.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure containing
the number of subvectors comprising the Many Vector, the global length of the Many Vector (including all subvectors), a
pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors
that populate subvec_array.

struct _N_VectorContent_ManyVector {

sunindextype num_subvectors; /¥ number of vectors attached /
sunindextype global_length; /* overall manyvector length =2
N_Vector* subvec_array; /* pointer to N_Vector array &/
booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_manyvector.h. The installed module library to link
against is libsundials_nvecmanyvector.lib where .1lib is typically .so for shared libraries and .a for static
libraries.

6.17.2 NVECTOR_MANYVECTOR functions

The NVECTOR_MANY VECTOR module implements all vector operations listed in §6.2 except for N_VGetArray-
Pointer(), N_VSetArrayPointer (), N_VScaleAddMultiVectorArray(), and N_VLinearCombinationVec-
torArray (). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed
according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _ManyVector (e.g. N_-
VDestroy_ManyVector). The module NVECTOR_MANYVECTOR provides the following additional user-callable
routines:
N_Vector N_VNew_ManyVector (sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)

This function creates a Many Vector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer

array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the ManyVector that contains them.

Upon successful completion, the new Many Vector is returned; otherwise this routine returns NULL (e.g., a mem-
ory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.6.2.5, and the functions are documented in §6.1.1.

N_Vector N_VGetSubvector_ManyVector (N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_ManyVector (N_Vector v, sunindextype vec_num)

This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_ManyVector(v, 0);
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realtype *N_VGetSubvectorArrayPointer_ManyVector (N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.
If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.
int N_VSetSubvectorArrayPointer_ManyVector (realtype *v_data, N_Vector v, sunindextype vec_num)
This function sets the data array pointer for the vec_num subvector from the NVECTOR array.
If the input vec_num is invalid, or if the subvector does not support the N_VSetArrayPointer operation, then
-1 is returned; otherwise it returns 0.
sunindextype N_VGetNumSubvectors_ManyVector (N_Vector v)
This function returns the overall number of subvectors in the Many Vector object.
By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module, except for
N_VWrmsNormVectorArray () and N_VWrmsNormMaskVectorArray (), that are enabled by default. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_ManyVector(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VCIlone (). This guarantees that the new vectors will have the same operations enabled/disabled,
since cloned vectors inherit those configuration options from the vector they are cloned from, while vectors created
with N_VNew_ManyVector () will have the default settings for the NVECTOR_MANYVECTOR module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as desired before
attaching them to the ManyVector in N_VNew_ManyVector().
int N_VEnableFusedOps_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the manyvector
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the manyvec-
tor vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the manyvector vector. The return value is ® for success and -1 if the input vector or its ops structure
are NULL.
int N_VEnableDotProdMulti_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
manyvector vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
manyvector vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the manyvector
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_ManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the manyvector
vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableWrmsNormVectorArray_ManyVector (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
manyvector vector. The return value is ® for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableWrmsNormMaskVectorArray_ManyVector (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays in
the manyvector vector. The return value is @ for success and -1 if the input vector or its ops structure are NULL.

Notes

e N_VNew_ManyVector () sets the field own_data = SUNFALSE.N_VDestroy_ManyVector () will not attempt
to call N_VDestroy () on any subvectors contained in the subvector array for any N_Vector with own_data set
to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the subvectors.

» To maximize efficiency, arithmetic vector operations in the NVECTOR_MANY VECTOR implementation that
have more than one N_Vector argument do not check for consistent internal representation of these vectors. It
is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

6.18 The NVECTOR_MPIMANY VECTOR Module

The NVECTOR_MPIMANY VECTOR module is designed to facilitate problems with an inherent data partitioning
for the solution vector, and when using distributed-memory parallel architectures. As such, this implementation sup-
ports all use cases allowed by the MPI-unaware NVECTOR_MANY VECTOR implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through construction
of distinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MPI-
MANYVECTOR. Three potential use cases for this module include:

A. Heterogenous computational architectures (single-node or multi-node): for data partitioning between different
computing resources on a node, architecture-specific subvectors may be created for each partition. For example,
a user could create one MPI-parallel component based on NVECTOR_PARALLEL, another GPU-accelerated
component based on NVECTOR_CUDA.

B. Process-based multiphysics decompositions (multi-node): for computations that combine separate MPI-based
simulations together, each subvector may reside on a different MPI communicator, and the MPIMany Vector
combines these via an MPI intercommunicator that connects these distinct simulations together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for problems that require separate subvectors
for each solution component. For example, in an incompressible Navier-Stokes simulation, separate subvectors
may be used for velocities and pressure, which are combined together into a single MPIMany Vector for the overall
“solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANY VECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MPIMANY VECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum “standard” set of operations in §6.2.1, however significant performance benefits may be obtained
when subvectors additionally implement the optional local reduction operations listed in §6.2.4.

Additionally, NVECTOR_MPIMANY VECTOR sets no limit on the number of subvectors that may be attached (aside
from the limitations of using sunindextype for indexing, and standard per-node memory limitations). However, while
this ostensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we anticipate that
this extreme situation will hinder performance due to non-stride-one memory accesses and increased function call
overhead. We therefore recommend a relatively coarse partitioning of the problem, although actual performance will
likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MPIMANY VECTOR. However, even at present we an-
ticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.
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6.18.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANY VECTOR implementation defines the content field of N_Vector to be a structure con-
taining the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number of subvectors comprising
the MPIMany Vector, the global length of the MPIMany Vector (including all subvectors on all MPI ranks), a pointer
to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors that
populate subvec_array.

struct _N_VectorContent_MPIManyVector {

MPI_Comm comm; /* overall MPI communicator 4
sunindextype num_subvectors; /¥ number of vectors attached */
sunindextype global_length; /* overall mpimanyvector length %/
N_Vector* subvec_array; /* pointer to N_Vector array 74
booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_mpimanyvector.h. The installed module library to
link against is 1ibsundials_nvecmpimanyvector.lib where .1ib is typically .so for shared libraries and .a for
static libraries.

Note: If SUNDIALS is configured with MPI disabled, then the MPIMany Vector library will not be built. Furthermore,
any user codes that include nvector_mpimanyvector.h must be compiled using an MPI-aware compiler (whether
the specific user code utilizes MPI or not). We note that the NVECTOR_MANY VECTOR implementation is designed
for Many Vector use cases in an MPI-unaware environment.

6.18.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR_MPIMANY VECTOR module implements all vector operations listed in §6.2, except for N_VGetAr-
rayPointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombination-
VectorArray (). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. In-
stead, the NVECTOR_MPIMANY VECTOR module provides functions to access subvectors, whose data may in turn
be accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _MPIManyVector (e.g. N_-
VDestroy_MPIManyVector). The module NVECTOR_MPIMANY VECTOR provides the following additional user-
callable routines:

N_Vector N_VNew_MPIManyVector (sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)

This function creates a MPIMany Vector from a set of existing NVECTOR objects, under the requirement that
all MPI-aware subvectors use the same MPI communicator (this is checked internally). If none of the subvectors
are MPI-aware, then this may equivalently be used to describe data partitioning within a single node. We note
that this routine is designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIMany Vector that contains them.

Upon successful completion, the new MPIMany Vector is returned; otherwise this routine returns NULL (e.g., if
two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray (), and N_VSetVecAtIndexVectorArray () to create the N_Vector* argument. This
is further explained in §4.6.2.5, and the functions are documented in §6.1.1.
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N_Vector N_VMake_MPIManyVector (MPI_Comm comm, sunindextype num_subvectors, N_Vector *vec_array,
SUNContext sunctx)

This function creates a MPIMany Vector from a set of existing NVECTOR objects, and a user-created MPI com-
municator that “connects” these subvectors. Any MPI-aware subvectors may use different MPI communicators
than the input comm. We note that this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIManyVector().

If all subvectors are MPI-unaware, then the input comm argument should be MPI_COMM_NULL, although in this
case, it would be simpler to call N_VNew_MPIManyVector () instead, or to just use the NVECTOR_MANY VEC-
TOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIMany Vector that contains them.

Upon successful completion, the new MPIMany Vector is returned; otherwise this routine returns NULL (e.g., if
the input vec_array is NULL).
N_Vector N_VGetSubvector_MPIManyVector (N_Vector v, sunindextype vec_num)

This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_MPIManyVector (N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_MPIManyVector(v, 0);

realtype *N_VGetSubvectorArrayPointer_MPIManyVector (N_Vector v, sunindextype vec_num)

This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

int N_VSetSubvectorArrayPointer_MPIManyVector (realtype *v_data, N_Vector v, sunindextype vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VSetArrayPointer operation, then
-1 is returned; otherwise it returns 0.

sunindextype N_VGetNumSubvectors_MPIManyVector (N_Vector v)

This function returns the overall number of subvectors in the MPIMany Vector object.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANY VECTOR module, except
for N_VWirmsNormVectorArray () and N_ViWirmsNormMaskVectorArray (), that are enabled by default. The follow-
ing additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_MPIManyVec-
tor() or N_VMake_MPIManyVector (), enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N_VCIone (). This guarantees that the new vectors will have
the same operations enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew_MPIManyVector () and N_VMake_MPIManyVector () will have the
default settings for the NVECTOR_MPIMANY VECTOR module. We note that these routines do not call the corre-
sponding routines on subvectors, so those should be set up as desired before attaching them to the MPIMany Vector in
N_VNew_MPIManyVector () or N_VMake_MPIManyVector().
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int N_VEnableFusedOps_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the MPI-
Many Vector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearCombination_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the MPI-
Many Vector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleAddMulti_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the MPIManyVector vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.
int N_VEnableDotProdMul ti_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the MPI-
Many Vector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableLinearSumVectorArray_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the MPI-
Many Vector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableScaleVectorArray_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the MPI-
Many Vector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnableConstVectorArray_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the MPI-
Many Vector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
int N_VEnablelirmsNormVectorArray_MPIManyVector (N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
MPIMany Vector vector. The return value is O for success and -1 if the input vector or its ops structure are NULL.
int N_VEnablelirmsNormMaskVectorArray_MPIManyVector (N_Vector v, booleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the MPIMany Vector vector. The return value is ® for success and -1 if the input vector or its ops structure
are NULL.

Notes

e N_VNew_MPIManyVector() and N_VMake_MPIManyVector () set the field own_data = SUNFALSE. N_VDe-
stroy_MPIManyVector () will not attempt to call N_VDestroy () on any subvectors contained in the subvector
array for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallo-
cate the subvectors.

* To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANY VECTOR implementation
that have more than one N_Vector argument do not check for consistent internal representation of these vectors.
Itis the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.
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6.19 The NVECTOR_MPIPLUSX Module

The NVECTOR_MPIPLUSX module is designed to facilitate the MPI+X paradigm, where X is some form of on-
node (local) parallelism (e.g. OpenMP, CUDA). This paradigm is becoming increasingly popular with the rise of
heterogeneous computing architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that implements the minimum
“standard” set of operations in §6.2.1. However, it is not recommended to use the NVECTOR_PARALLEL, NVEC-
TOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations underneath the NVECTOR_MPI-
PLUSX module since they already provide MPI capabilities.

6.19.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANYVECTOR. Ac-
cordingly, it adopts the same content structure as defined in §6.18.1.

The header file to include when using this module is nvector_mpiplusx.h. The installed module library to link
against is libsundials_nvecmpiplusx.lib where .1ib is typically .so for shared libraries and .a for static li-
braries.

Note: If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built. Furthermore, any
user codes that include nvector_mpiplusx.h must be compiled using an MPI-aware compiler.

6.19.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in §6.2, from the NVECTOR_MPI-
MANYVECTOR (see §6.18) except for N_VGetArrayPointer (), and N_VSetArrayPointer(); the module pro-
vides its own implementation of these functions that call the local vector implementations. Therefore, the NVECTOR_-
MPIPLUSX module implements all of the operations listed in the referenced sections except for N_VScaleAddMul -
tiVectorArray(),and N_VLinearCombinationVectorArray (). Accordingly, it’s compatibility with the SUNDI-
ALS direct solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:

N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector *local_vector, SUNContext sunctx)

This function creates a MPIPlusX vector from an exisiting local (i.e. on node) NVECTOR object, and a user-
created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIPlusX().

This routine will copy the NVECTOR pointer to the input local_vector, so the underlying local NVECTOR
object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine returns NULL (e.g., if the
input local_vector is NULL).

N_Vector N_VGetLocalVector_MPIPlusX(N Vector v)
This function returns the local vector underneath the MPIPlusX NVECTOR.

sunindextype N_VGetLocalLength_MPIPlusX(N_Vector v)
This function returns the local length of the vector underneath the MPIPlusX NVECTOR.

Usage:
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local_length = N_VGetLocalLength_MPIPlusX(v);

realtype *N_VGetArrayPointer_MPIPlusX(N_Vector v)

This function returns the data array pointer for the local vector.
If the local vector does not support the N_VGetArrayPointer () operation, then NULL is returned.

void N_VSetArrayPointer_MPIPlusX(realtype *v_data, N_Vector v)

This function sets the data array pointer for the local vector if the local vector implements the N_VSetArray-
Pointer () operation.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead users should
enable/disable fused operations on the local vector.

Notes

e N_VMake_MPIPIlusX() sets the field own_data = SUNFALSE and N_VDestroy_MPIPlusX() will notcall N_-
VDestroy () on the local vector. In this a case, it is the user’s responsibility to deallocate the local vector.

» To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation that have
more than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created with
the same subvector representations.

6.20 NVECTOR Examples

There are NVECTOR examples that may be installed for eac himplementation. Each implementation makes use of the
functions in test_nvector.c. These example functions show simple usage of the NVECTOR family of functions.
The input to the examples are the vector length, number of threads (if threaded implementation), and a print timing
flag.

The following is a list of the example functions in test_nvector.c:
* Test_N_VClone: Creates clone of vector and checks validity of clone.
* Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.
* Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.
* Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.
* Test_N_VGetArrayPointer: Get array pointer.
* Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.
* Test_N_VGetLength: Compares self-reported length to calculated length.

e Test_N_VGetCommunicator: Compares self-reported communicator to the one used in constructor; or for
MPI-unaware vectors it ensures that NULL is reported.

* Test_N_VLinearSum Case la: Testy=x+y
e Test_N_VLinearSum Case 1b: Testy =-x +y
e Test_N_VLinearSum Case lc: Testy = ax +y
e Test_N_VLinearSum Case 2a: Testx =X +y
* Test_N_VLinearSum Case 2b: Testx =x -y

e Test_N_VLinearSum Case 2c: Test x = X + by
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Test_N_VLinearSum Case 3: Testz=x +y
Test_N_VLinearSum Case 4a: Testz=X -y
Test_N_VLinearSum Case 4b: Testz=-x +y
Test_N_VLinearSum Case 5a: Test z = X + by
Test_N_VLinearSum Case 5b: Testz=ax +y
Test_N_VLinearSum Case 6a: Test z = -x + by
Test_N_VLinearSum Case 6b: Testz =ax -y
Test_N_VLinearSum Case 7: Test z = a(x + y)
Test_N_VLinearSum Case 8: Test z = a(x - y)
Test_N_VLinearSum Case 9: Test z = ax + by
Test_N_VConst: Fill vector with constant and check result.
Test_N_VProd: Test vector multiply: z=x *y
Test_N_VDiv: Test vector division: z=x/y
Test_N_VScale: Case 1: scale: x = cx
Test_N_VScale: Case 2: copy: z =X
Test_N_VScale: Case 3: negate: z = -X
Test_N_VScale: Case 4: combination: z = cx
Test_N_VAbs: Create absolute value of vector.

Test_N_VInv: Compute z[i] = 1/ x[i]

** Test_N_VAddConst: add constant vector: z=c + x

Test_N_VDotProd: Calculate dot product of two vectors.
Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.
Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square using
all elements except one.

Test_N_VMin: Create vector, find and validate the min.

Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.
Test_N_VL1Norm: Create vector, find and validate the L1 norm.

Test_N_VCompare: Compare vector with constant returning and validating comparison vector.
Test_N_VInvTest: Test z[i] = 1 / x[i]

Test_N_VConstrMask: Test mask of vector x with vector c.

Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.
Test_N_VLinearCombination: Case la: Test x =ax

Test_N_VLinearCombination: Case 1b: Testz=ax

Test_N_VLinearCombination: Case 2a: Testx=ax+by

Test_N_VLinearCombination: Case 2b: Testz=ax+by
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Test_N_VLinearCombination: Case 3a: Testx=x+ay+bz

Test_N_VLinearCombination: Case 3b: Testx=ax+by+cz

Test_N_VLinearCombination: Case 3c: Testw=ax+by+cz

Test_N_VScaleAddMulti: Case la: y=ax+y

Test_N_VScaleAddMulti: Case lb: z=ax +y

Test_N_VScaleAddMulti: Case 2a: Y[i] =c[i] x + Y[i],i=1,2,3

Test_N_VScaleAddMulti: Case 2b: Z[i] =c[i] x + Y[i],i=1,2,3

Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a vector

array.

Test_N_VLinearSumVectorArray: Case l: z=ax+by

Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]

Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]

Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]

Test_N_VScaleVectorArray: Case la:y=cy

Test_N_VScaleVectorArray: Case lb: z=cy

Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]

Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]

Test_N_VConstVectorArray: Case la: z=c

Test_N_VConstVectorArray: Case 1b: Z[i] = ¢

Test_N_VWrmsNormVectorArray: Case la: Create a vector of know values, find and validate the weighted

root mean square norm.

Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find and
validate the weighted root mean square norm of each.

Test_N_VWrmsNormMaskVectorArray: Case la: Create a vector of know values, find and validate the weighted
root mean square norm using all elements except one.

Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each using all elements except one.

Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:
Test_N_VScaleAddMultiVectorArray:

Case laxy=ax+y

Case 1b: z=ax+y

Case 2a: Y[j][0] = a[j] X[O] + Y[jI[0]
Case 2b: Z[j1[0] = a[j] X[0] + Y[j1[0]
Case 3a: Y[0][i] = a[0] X[i] + Y[O][i]
Case 3b: Z[0][i] = a[0] X[i] + Y[O][i]
Case 4a: Y[j][i] = a[j] X[i] + YI[jlli]
Case 4b: Z[j][i] = a[j] X[i] + Y([j][i]

Test_N_VLinearCombinationVectorArray: Case la: x =ax

Test_N_VLinearCombinationVectorArray: Case lb: z=ax

6.20.

NVECTOR Examples
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Test_N_VLinearCombinationVectorArray: Case 2a: x=ax+by
Test_N_VLinearCombinationVectorArray: Case2b: z=ax+by
Test_N_VLinearCombinationVectorArray: Case 3a: x=ax+by+cz
Test_N_VLinearCombinationVectorArray: Case 3b: w=ax+by+cz
Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[O][i]
Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[O][i]
Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[O][i] + c[1] X[1][i]
Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[O][i] + c[1] X[1][i]
Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[O][i] + c[1] X[1][i] + c[2] X[2][i]
Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[O][i] + c[1] X[1][i] + c[2] X[2][i]
Test_N_VLinearCombinationVectorArray: Case 6¢: Z[i] = c[0] X[O][i] + c[1] X[1][i] + c[2] X[2][i]
Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local portion of the
max norm.

Test_N_VMinLocal: Create vector, find and validate the MPI task-local min.
Test_N_VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L.1 norm.

Test_N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local portion of the
weighted squared sum of two vectors.

Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-local portion of
the weighted squared sum of two vectors, using all elements except one.

Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]
Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector c.

Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the MPI task-local
minimum quotient.

Test_N_VMBufSize: Tests for accuracy in the reported buffer size.
Test_N_VMBufPack: Tests for accuracy in the buffer packing routine.

Test_N_VMBufUnpack: Tests for accuracy in the buffer unpacking routine.
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Chapter 7

Matrix Data Structures

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS additionally
provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE)), are constructed to only depend on these generic matrix operations,
making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided matrix
types, SUNDIALS also provides at least two SUNLinearSolver implementations that factor these matrix objects and
use them in the solution of linear systems.

7.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS packages not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the particular
SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX module,
particularly in cases where they provide their own N_Vector and/or linear solver modules, and require matrices that
are compatible with those implementations. The generic SUNMatrix operations are described below, and descriptions
of the SUNMATRIX implementations provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type. Specif-
ically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix operations.
The type SUNMatrix is defined as:

typedef struct _generic_SUNMatrix *SUNMatrix
and the generic structure is defined as

struct _generic_SUNMatrix {

void *content;

struct _generic_SUNMatrix_Ops *ops;
3

Here, the _generic_SUNMatrix_Ops structure is essentially a list of function pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid) (SUNMatrix);
SUNMatrix (*clone) (SUNMatrix);

(continues on next page)
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(continued from previous page)

void (*destroy) (SUNMatrix);

int (*zero) (SUNMatrix);

int (*copy) (SUNMatrix, SUNMatrix);

int (*scaleadd) (realtype, SUNMatrix, SUNMatrix);
int (*scaleaddi) (realtype, SUNMatrix);

int (*matvecsetup) (SUNMatrix) ;

int (*matvec) (SUNMatrix, N_Vector, N_Vector);
int (*space) (SUNMatrix, long int*, long int*);

e

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)
{

return((int) A->ops->zero(A));

}

§7.2 contains a complete list of all matrix operations defined by the generic SUNMATRIX module. A particular
implementation of the SUNMATRIX module must:

 Specify the content field of the SUNMatrix object.

* Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
package and/or linear solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same code.

* Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with the
new content field and with ops pointing to the new matrix operations.

* Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix (e.g.,
a routine to print the content for debugging purposes).

* Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides three utility func-
tions SUNMatNewEmpty (), SUNMatCopyOps (), and SUNMatFreeEmpty (). When used in custom SUNMATRIX con-
structors and clone routines these functions will ease the introduction of any new optional matrix operations to the
SUNMATRIX API by ensuring only required operations need to be set and all operations are copied when cloning a
matrix.

SUNMatrix SUNMatNewEmpty ()

This function allocates a new generic SUNMatrix object and initializes its content pointer and the function
pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNMatrix object. If an error occurs when allocating the object, then
this routine will return NULL.

int SUNMatCopyOps (SUNMatrix A, SUNMatrix B)

This function copies the function pointers in the ops structure of A into the ops structure of B.
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Arguments:
* A — the matrix to copy operations from.
* B — the matrix to copy operations to.

Return value:
If successful, this function returns 0. If either of the inputs are NULL or the ops structure of either
input is NULL, then is function returns a non-zero value.

void SUNMatFreeEmpty (SUNMatrix A)

This routine frees the generic SUNMatrix object, under the assumption that any implementation-specific data
that was allocated within the underlying content structure has already been freed. It will additionally test whether
the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:
* A —the SUNMatrix object to free

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 7.1. It is recommended that a user-supplied SUNMATRIX implementation use the SUNMATRIX_-
CUSTOM identifier.

Table 7.1: Identifiers associated with matrix kernels supplied with SUN-

DIALS
Matrix ID Matrix type
SUNMATRIX_BAND Band M x M matrix
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix
SUNMATRIX_CUSTOM User-provided custom matrix
SUNMATRIX_DENSE Dense M x N matrix
SUNMATRIX_GINKGO SUNMatrix wraper for Ginkgo matrices

SUNMATRIX_MAGMADENSE  Dense M x N matrix

SUNMATRIX ONEMKLDENSE oneMKL dense M x N matrix
SUNMATRIX_SLUNRLOC SUNMatrix wrapper for SuperLU_DIST SuperMatrix
SUNMATRIX_SPARSE Sparse (CSR or CSC) M x N matrix

7.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)

Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,...) from the abstract SUNMatrix interface. This is used to assess compatibility with
SUNDIALS-provided linear solver implementations. Returned values are given in Table 7.1

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone (SUNMatrix A)

Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix values, but rather allocates storage for the new matrix.

Usage:
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B = SUNMatClone(A);

void SUNMatDestroy (SUNMatrix A)
Destroys the SUNMatrix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy(A);

int SUNMatSpace (SUNMatrix A, long int *Irw, long int *liw)

Returns the storage requirements for the matrix A. /rw contains the number of realtype words and liw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:

retval = SUNMatSpace(A, &lrw, &liw);

int SUNMatZero (SUNMatrix A)

Zeros all entries of the SUNMatrix A. The return value is an integer flag denoting success/failure of the operation:
Aijj=0, i=1,...,m, j=1,...,n.

Usage:

retval = SUNMatZero(A);

int SUNMatCopy (SUNMatrix A, SUNMatrix B)

Performs the operation B gets A for all entries of the matrices A and B. The return value is an integer flag denoting
success/failure of the operation:

Bij=A4;; i=1,...,m, j=1,...,n
Usage:
retval = SUNMatCopy(A,B);

int SUNMatScaleAdd (realtype c, SUNMatrix A, SUNMatrix B)
Performs the operation A gets cA + B. The return value is an integer flag denoting success/failure of the operation:

AZ‘J:CA,‘J—FBZ‘J, i:l,...,m,j:l,...,n.
Usage:
retval = SUNMatScaleAdd(c, A, B);

int SUNMatScaleAddI (realtype ¢, SUNMatrix A)
Performs the operation A gets cA + I. The return value is an integer flag denoting success/failure of the operation:

Ai,j = CAi’j + 6i,j7 ,j=1,...,n.

Usage:
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retval = SUNMatScaleAddI(c, A);

int SUNMatMatvecSetup (SUNMatrix A)

Performs any setup necessary to perform a matrix-vector product. The return value is an integer flag denoting
success/failure of the operation. It is useful for SUNMatrix implementations which need to prepare the matrix
itself, or communication structures before performing the matrix-vector product.

Usage:

retval = SUNMatMatvecSetup(A);

int SUNMatMatvec (SUNMatrix A, N_Vector x, N_Vector y)

Performs the matrix-vector producty gets Ax. It should only be called with vectors x and y that are compatible with
the matrix A — both in storage type and dimensions. The return value is an integer flag denoting success/failure
of the operation:

n
Y = E Ai,jzja z:l,,m
j=1

Usage:

retval = SUNMatMatvec(A, x, y);

7.2.1 SUNMatrix return codes

The functions provided to SUNMatrix modules within the SUNDIALS-provided SUNMatrix implementations utilize
a common set of return codes, listed below. These adhere to a common pattern: 0 indicates success, a negative value
indicates a failure. Aside from this pattern, the actual values of each error code are primarily to provide additional
information to the user in case of a SUNMatrix failure.

e SUNMAT_SUCCESS (0) — successful call
e SUNMAT_ILL_INPUT (-1) — an illegal input has been provided to the function
e SUNMAT_MEM_FAIL (-2) — failed memory access or allocation

SUNMAT_OPERATION_FAIL (-3) — a SUNMatrix operation returned nonzero

SUNMAT_MATVEC_SETUP_REQUIRED (-4) —the SUNMatMatvecSetup () routine needs to be called prior to call-
ing SUNMatMatvec()

7.3 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrix module, SUNMATRIX_DENSE, defines the confent field of SUNMatrix
to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype “data;
sunindextype ldata;
realtype **cols;

};
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These entries of the content field contain the following information:

M - number of rows
N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are stored
columnwise, i.e. the (i, ;) element of a dense SUNMatrix object (with 0 < ¢ < M and 0 < j < N) may be
accessed via data[j*M+i].

ldata - length of the data array (= M N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array data.
The (4, j) element of a dense SUNMatrix (with 0 < ¢ < M and 0 < j < N) may be accessed may be accessed
via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D(A)

This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense) (A->content) )

SM_ROWS_D(A)

Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_D(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_D(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

SM_COLUMNS_D(A)

Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns = SM_-
COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assignment SM_-
COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

SM_LDATA_D(A)

Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata = SM_LDATA_-
D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment SM_LDATA_D (A)
= A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:
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#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

SM_DATA_D(A)

This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data array
for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

SM_COLS_D(A)

This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers for the
dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array of A to be A_-
cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

SM_COLUMN_D(A)

This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A, j) sets col_j to be a pointer to the first entry of the j-th column
of the M x N dense matrix A (with 0 < 5 < N). The type of the expression SM_COLUMN_D(A, j) is realtype

*. The pointer returned by the call SM_COLUMN_D(A, j) can be treated as an array which is indexed from 0 to
M-1.

Implementation:

#define SM_COLUMN_D(A, j) ( (SM_CONTENT_D(A)->cols)[j] )

SM_ELEMENT_D(A)

This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ijanda_ij = SM_ELEMENT_D(A,1i, j) reference the Ai, jel-
ement of the M x N dense matrix A (with0 <7< M and 0 < j < N).

Implementation:

#define SM_ELEMENT D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j1[i] )

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in §7.2. Their names
are obtained from those in that section by appending the suffix _Dense (e.g. SUNMatCopy_Dense). The module
SUNMATRIX_DENSE provides the following additional user-callable routines:

SUNMatrix SUNDenseMatrix (sunindextype M, sunindextype N, SUNContext sunctx)

This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

void SUNDenseMatrix_Print (SUNMatrix A, FILE *outfile)

This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.
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sunindextype SUNDenseMatrix_Rows (SUNMatrix A)

This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns (SUNMatrix A)

This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the dense SUNMatrix.

realtype *SUNDenseMatrix_Data(SUNMatrix A)

This function returns a pointer to the data array for the dense SUNMatrix.
realtype **SUNDenseMatrix_Cols (SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.
realtype *SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting pointer
should be indexed over the range 0 to M-1.
Notes

* When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

— First obtain the component array via A_data = SUNDenseMatrix_Data(A), or equivalently A_data =
SM_DATA_D(A), and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SUNDenseMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_D(A), and then access A_cols[j][i] within the loop.

— Within a loop over the columns, access the column pointer via A_colj = SUNDenseMatrix_Column(A,
j) and then to access the entries within that column using A_colj [i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A, i, j) within a double loop.

» Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.4 The SUNMATRIX_MAGMADENSE Module

The SUNMATRIX_MAGMADENSE module interfaces to the MAGMA linear algebra library and can target
NVIDIA’s CUDA programming model or AMD’s HIP programming model [56]. All data stored by this matrix imple-
mentation resides on the GPU at all times. The implementation currently supports a standard LAPACK column-major
storage format as well as a low-storage format for block-diagonal matrices

Ay O 0

0 A, 0
A= .

0 0 - A, 1

This matrix implementation is best paired with the SUNLinearSolver_MagmaDense SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix_magmadense.h. The installed library
to link to is libsundials_sunmatrixmagmadense.lib where 1ib is typically .so for shared libraries and .a for
static libraries.
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Warning: The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

7.4.1 SUNMATRIX_MAGMADENSE Functions
The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations listed in
§7.2.
e SUNMatGetID_MagmaDense — returns SUNMATRIX_MAGMADENSE
¢ SUNMatClone_MagmaDense
¢ SUNMatDestroy_MagmaDense
¢ SUNMatZero_MagmaDense
¢ SUNMatCopy_MagmaDense
e SUNMatScaleAdd_MagmaDense
e SUNMatScaleAddI_MagmaDense
e SUNMatMatvecSetup_MagmaDense
e SUNMatMatvec_MagmaDense
¢ SUNMatSpace_MagmaDense
In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_MagmaDense (sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, void *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M/ x N SUNMATRIX_MAGMADENSE SUN-
Matrix.

Arguments:
e M — the number of matrix rows.
e N — the number of matrix columns.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.

* memhelper — the memory helper used for allocating data.
* queue — a cudaStream_t when using CUDA or a hipStream_t when using HIP.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_MagmaDenseBlock (sunindextype nblocks, sunindextype M_block, sunindextype N_block,
SUNMemoryType memtype, SUNMemoryHelper memhelper, void
*queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_MAGMADENSE
SUNMatrix with nblocks of size M x N.

Arguments:
e nblocks — the number of matrix rows.

e M_block — the number of matrix rows in each block.
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N_block — the number of matrix columns in each block.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.

* memhelper — the memory helper used for allocating data.
* queue — a cudaStream_t when using CUDA or a hipStream_t when using HIP.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

sunindextype SUNMatrix_MagmaDense_Rows (SUNMatrix A)

This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Myjockx X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_Columns (SUNMatrix A)

This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Npjock X nblocks.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockRows (SUNMatrix A)

This function returns the number of rows in a block of the SUNMatrix object.
Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockColumns (SUNMatrix A)

This function returns the number of columns in a block of the SUNMatrix object.
Arguments:
¢ A —a SUNMatrix object.

Return value:

If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

sunindextype SUNMatrix_MagmaDense_LData (SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

* A —a SUNMatrix object.
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Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_NumBlocks (SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_TLL_INPUT.

realtype *SUNMatrix_MagmaDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

realtype **SUNMatrix_MagmaDense_BlockData (SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:
e A —a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

realtype *SUNMatrix_MagmaDense_Block (SUNMatrix A, sunindextype k)

This function returns a pointer to the data array for block k in the SUNMatrix.
Arguments:

¢ A —a SUNMatrix object.

* k —the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks.

realtype *SUNMatrix_MagmaDense_Column (SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:
¢ A —a SUNMatrix object.
e j —the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks * Npjock-
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realtype *SUNMatrix_MagmaDense_BlockColumn (SUNMatrix A, sunindextype X, sunindextype j)

This function returns a pointer to the data array for column j of block k in the SUNMatrix.
Arguments:

* A —a SUNMatrix object.

* k — the block index.

¢ j —the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, k£ should be strictly less than nblocks and j should be
strictly less than Npjock-

int SUNMatrix_MagmaDense_CopyToDevice (SUNMatrix A, realtype *h_data)

This function copies the matrix data to the GPU device from the provided host array.

Arguments:
* A —a SUNMatrix object
* h_data — a host array pointer to copy data from.

Return value:
* SUNMAT_SUCCESS - if the copy is successful.
e SUNMAT_ILL_INPUT - if either the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.
e SUNMAT_MEM_FAIL - if the copy fails.

int SUNMatrix_MagmaDense_CopyFromDevice (SUNMatrix A, realtype *h_data)

This function copies the matrix data from the GPU device to the provided host array.
Arguments:
* A —a SUNMatrix object
* h_data — a host array pointer to copy data to.
Return value:
* SUNMAT_SUCCESS - if the copy is successful.
e SUNMAT_ILL_INPUT - if either the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.
e SUNMAT_MEM_FAIL - if the copy fails.

7.4.2 SUNMATRIX_MAGMADENSE Usage Notes

Warning: When using the SUNMATRIX_MAGMADENSE module with a SUNDIALS package (e.g. CVODE),
the stream given to matrix should be the same stream used for the NVECTOR object that is provided to the package,
and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization
issues may occur.
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7.5 The SUNMATRIX_ONEMKLDENSE Module

The SUNMATRIX_ONEMKLDENSE module is intended for interfacing with direct linear solvers from the Intel
oneAPI Math Kernel Library (oneMKL) using the SYCL (DPC++) programming model. The implementation currently
supports a standard LAPACK column-major storage format as well as a low-storage format for block-diagonal matrices,

Ay O 0

0 A, 0
A= .

0 0 - A1

This matrix implementation is best paired with the SUNLinearSolver_OneMklDense linear solver.

The header file to include when using this class is sunmatrix/sunmatrix_onemkldense.h. The installed library
to link to is 1ibsundials_sunmatrixonemkldense.lib where 1ib is typically . so for shared libraries and . a for
static libraries.

Warning: The SUNMATRIX_ONEMKLDENSE class is experimental and subject to change.

7.5.1 SUNMATRIX_ONEMKLDENSE Functions

The SUNMATRIX_ONEMKLDENSE class defines implementations of the following matrix operations listed in §7.2.
e SUNMatGetID_OneMklDense — returns SUNMATRIX_ONEMKLDENSE
* SUNMatClone_OnelMklDense
¢ SUNMatDestroy_OneMklDense
e SUNMatZero_OneMklDense
¢ SUNMatCopy_OnelMklDense
e SUNMatScaleAdd_OnelMklDense
e SUNMatScaleAddI_OneMklDense
e SUNMatMatvec_OnelklDense
¢ SUNMatSpace_OnelMklDense
In addition, the SUNMATRIX_ONEMKLDENSE class defines the following implementation specific functions.

7.5.1.1 Constructors

SUNMatrix SUNMatrix_OneMklDense (sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper membhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M x N SUNMATRIX_ONEMKLDENSE SUN-
Matrix.

Arguments:
e M — the number of matrix rows.
¢ N — the number of matrix columns.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.
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* memhelper — the memory helper used for allocating data.
* queue — the SYCL queue to which operations will be submitted.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_OneMklDenseBlock (sunindextype nblocks, sunindextype M_block, sunindextype
N_block, SUNMemoryType memtype, SUNMemoryHelper
membhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_ONEMKLDENSE
SUNMatrix with nblocks of size Mpjocr. X Npiock-

Arguments:
* nblocks — the number of matrix rows.
* M_block — the number of matrix rows in each block.
e N _block — the number of matrix columns in each block.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.

» memhelper — the memory helper used for allocating data.
* queue — the SYCL queue to which operations will be submitted.
* sunctx — the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

7.5.1.2 Access Matrix Dimensions

sunindextype SUNMatrix_OneMklDense_Rows (SUNMatrix A)

This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Myjocx X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_Columns (SUNMatrix A)

This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nyjock X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.
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7.5.1.3 Access Matrix Block Dimensions

sunindextype SUNMatrix_OneMklDense_NumBlocks (SUNMatrix A)

This function returns the number of blocks in the SUNMatrix object.
Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_TILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockRows (SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockColumns (SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

7.5.1.4 Access Matrix Data

sunindextype SUNMatrix_OneMklDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

realtype *SUNMatrix_OneMklDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

realtype *SUNMatrix_OneMklDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:
¢ A —a SUNMatrix object.

¢ j —the column index.
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Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks * Npjock-

7.5.1.5 Access Matrix Block Data

sunindextype SUNMatrix_OneMklDense_BlockLData(SUNMatrix A)
This function returns the length of the SUNMatrix data array for each block of the SUNMatrix object.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array for each block otherwise SUNMATRIX_TLL_INPUT.

realtype **SUNMatrix_OneMklDense_BlockData (SUNMatrix A)

This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.
Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

realtype *SUNMatrix_OneMklDense_Block (SUNMatrix A, sunindextype k)

This function returns a pointer to the data array for block k in the SUNMatrix.
Arguments:

* A —a SUNMatrix object.

* k —the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks.

realtype *SUNMatrix_OneMklDense_BlockColumn(SUNMatrix A, sunindextype K, sunindextype j)

This function returns a pointer to the data array for column j of block k in the SUNMatrix.
Arguments:

¢ A —a SUNMatrix object.

* k —the block index.

e j —the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, k£ should be strictly less than nblocks and j should be
strictly less than Npjock.
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7.5.1.6 Copy Data

int SUNMatrix_OneMklDense_CopyToDevice (SUNMatrix A, realtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

¢ A —a SUNMatrix object

* h_data — a host array pointer to copy data from.
Return value:

» SUNMAT_SUCCESS - if the copy is successful.

e SUNMAT_ILL_INPUT - if either the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

e SUNMAT_MEM_FAIL — if the copy fails.

int SUNMatrix_OneMklDense_CopyFromDevice (SUNMatrix A, realtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

¢ A —a SUNMatrix object

* h_data — a host array pointer to copy data to.
Return value:

* SUNMAT_SUCCESS - if the copy is successful.

e SUNMAT_ILL_INPUT - if either the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

e SUNMAT_MEM_FAIL — if the copy fails.

7.5.2 SUNMATRIX_ONEMKLDENSE Usage Notes

built for 64-bit indexing to use this class.

issues may occur.

Warning: The SUNMATRIX_ONEMKLDENSE class only supports 64-bit indexing, thus SUNDIALS must be

When using the SUNMATRIX_ONEMKLDENSE class with a SUNDIALS package (e.g. CVODE), the queue
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatMatvec () operation. If different streams are utilized, synchronization

7.6 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrix module, SUNMATRIX_BAND, defines the content field of SUNMatrix

to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype smu;

(continues on next page)
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(continued from previous page)

sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype *“*cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Fig. 7.1. A more complete description
of the parts of this content field is given below:

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 < mu < N
ml - lower half-bandwidth, 0 < ml < N

smu - storage upper bandwidth, mu < smu < N. The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for the
band matrix. The upper triangular factor U, however, may have an upper bandwidth as big asmin(N-1, mu+ml)
because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band matrix.

1dim - leading dimension (Idim > smu + ml + 1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to 1data contiguous locations which hold the elements within the
banded matrix.

ldata - length of the data array (= ldim N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices
from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[j][i-j+smu] is the (¢, 7)-th element with 7 — mu < ¢ < j + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B(A)

This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band) (A->content) )

SM_ROWS_B(A)

Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_B(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_B(A) = A_rows sets
the number of columns in A to equal A_rows.
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Fig. 7.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N x N band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from O to N-1 and the
(7, 5)-th element of A is denoted A(i, j). The greyed out areas of the underlying component storage are used by the

associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.
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Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

SM_COLUMNS_B(A)

Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

SM_UBAND_B(A)

Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

SM_LBAND_B(A)

Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

SM_SUBAND_B(A)

Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->smu )

SM_LDIM_B(A)

Access the 1dim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->1dim )

SM_LDATA_B(A)

Access the 1data parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

SM_DATA_B(A)

This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data array
for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A tobe A_data
by storing the pointer A_data.
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Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

SM_COLS_B(A)

This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers for the
banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array of A to be
A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

SM_COLUMN_B(A)

This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A, j) sets col_j to be a pointer to the diagonal element of the j-th
column of the N x NN band matrix A, 0 < j < N — 1. The type of the expression SM_COLUMN_B(A, j) is
realtype *. The pointer returned by the call SM_COLUMN_B(A, j) can be treated as an array which is indexed
from -mu to ml.

Implementation:
#define SM_COLUMN_B(A, j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

SM_ELEMENT_B(A)

This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,1i, j) reference the (¢, 7)-
th element of the N x N band matrix A, where 0 < 7,7 < N — 1. The location (¢, 7) should further satisfy
j—mu<¢<j+ml

Implementation:
#define SM_ELEMENT_B(A,i,j)  ( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(CA)] )

SM_COLUMN_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.
The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij = SM_COLUMN_ELEMENT_-

B(col_j,1i, j) reference the (7, j)-th entry of the band matrix A when used in conjunction with SM_COLUMN_B
to reference the j-th column through col_j. The index (¢, j) should satisfy j — mu < ¢ < j + ml.

Implementation:

#define SM_COLUMN_ELEMENT B(col_j,1i,j) (col_j[(i)-(j)I)

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Band (e.g. SUNMatCopy_Band). The module
SUNMATRIX_BAND provides the following additional user-callable routines:

SUNMatrix SUNBandMatrix (sunindextype N, sunindextype mu, sunindextype ml, SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, and the upper and lower half-bandwidths of the matrix, mu and m1. The stored upper bandwidth is set

to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLINSOL_LAPACK-
BAND modules.
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SUNMatrix SUNBandMatrixStorage (sunindextype N, sunindextype mu, sunindextype ml, sunindextype smu,
SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth, smu.
When creating a band SUNMatrix, this value should be

e atleast min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;
* exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

¢ at least mu if used in some other manner.

Note: It is strongly recommended that users call the default constructor, SUNBandMatrix(), in all standard
use cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to users who
require banded matrices for non-default purposes.

void SUNBandMatrix_Print (SUNMatrix A, FILE *outfile)

This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNBandMatrix_Rows (SUNMatrix A)

This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth (SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth (SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth (SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMatrix.

sunindextype SUNBandMatrix_LData(SUNMatrix A)

This function returns the length of the data array for the banded SUNMatrix.
realtype *SUNBandMatrix_Data(SUNMatrix A)

This function returns a pointer to the data array for the banded SUNMatrix.
realtype **SUNBandMatrix_Cols (SUNMatrix A)

This function returns a pointer to the cols array for the band SUNMatrix.
realtype *SUNBandMatrix_Column(SUNMatrix A, sunindextype j)

This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The resulting
pointer should be indexed over the range -mu to m1.

Warning: When calling this function from the Fortran interfaces the shape of the array that is returned is
[1], and the only element you can (legally) access is the diagonal element. Fortran users should instead work
with the data array returned by SUNBandMatrix_Data() directly.
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Notes
* When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

— First obtain the component array via A_data = SUNBandMatrix_Data(A), or equivalently A_data =
SM_DATA_B(A), and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SUNBandMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_B(A), and then access A_cols[j][i] within the loop.

— Within a loop over the columns, access the column pointer via A_colj = SUNBandMatrix_Column(A, j)
and then to access the entries within that column using SM_COLUMN_ELEMENT_B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT_B(A, i, j) within a double loop.

* Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.7 The SUNMATRIX_CUSPARSE Module

The SUNMATRIX_CUSPARSE module is an interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs
[6]. All data stored by this matrix implementation resides on the GPU at all times.

The header file to be included when using this module is sunmatrix/sunmatrix_cusparse.h. The installed library
to link to is libsundials_sunmatrixcusparse.lib where .1ib is typically .so for shared libraries and .a for
static libraries.

7.7.1 SUNMATRIX_CUSPARSE Description

The implementation currently supports the cuSPARSE CSR matrix format described in the cuSPARSE documentation,
as well as a unique low-storage format for block-diagonal matrices of the form

Ag O 0
0 A, 0
A= . )
0 0 - Ana

where all the block matrices Aj share the same sparsity pattern. We will refer to this format as BCSR (not to be
confused with the canonical BSR format where each block is stored as dense). In this format, the CSR column indices
and row pointers are only stored for the first block and are computed only as necessary for other blocks. This can
drastically reduce the amount of storage required compared to the regular CSR format when the number of blocks is
large. This format is well-suited for, and intended to be used with, the SUNLinearSolver_cuSolverSp_batchQR
linear solver (see §8.17).

The SUNMATRIX_CUSPARSE module is experimental and subject to change.
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7.7.2 SUNMATRIX_CUSPARSE Functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix operations listed
in §7.2 except for the SUNMatSpace () and SUNMatMatvecSetup () operations:

e SUNMatGetID_cuSparse —returns SUNMATRIX_ CUSPARSE
¢ SUNMatClone_cuSparse
e SUNMatDestroy_cuSparse
e SUNMatZero_cuSparse
e SUNMatCopy_cuSparse
* SUNMatScaleAdd_cuSparse — performs A = cA + B, where A and B must have the same sparsity pattern
* SUNMatScaleAddI_cuSparse — performs A = cA + I, where the diagonal of A must be present
¢ SUNMatMatvec_cuSparse
In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_cuSparse_NewCSR(int M, int N, int NNZ, cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix that uses
the CSR storage format. Its arguments are the number of rows and columns of the matrix, M and N, the number
of nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

SUNMatrix SUNMatrix_cuSparse_NewBlockCSR (int nblocks, int blockrows, int blockcols, int blocknnz,
cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix object
that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block diagonal matrix where each block
shares the same sparsity pattern. The blocks must be square. The function arguments are the number of blocks,
nblocks, the number of rows, blockrows, the number of columns, blockcols, the number of nonzeros in each
each block, blocknnz, and a valid cusparseHandle_t.

Warning: The SUNMAT_CUSPARSE_BCSR format currently only supports square matrices, i.e., blockrows
== blockcols.

SUNMatrix SUNMatrix_cuSparse_MakeCSR (cusparseMatDescr_t mat_descr, int M, int N, int NNZ, int *rowptrs,
int *colind, realtype *data, cusparseHandle_t cusp, SUNContext
sunctx)

This constructor function creates a SUNMATRIX_CUSPARSE SUNMatrix object from user provided pointers.
Its arguments are a cusparseMatDescr_t that must have index base CUSPARSE_INDEX_BASE_ZERO, the num-
ber of rows and columns of the matrix, M and N, the number of nonzeros to be stored in the matrix, NNZ, and a
valid cusparseHandle_t.

int SUNMatrix_cuSparse_Rows (SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.
int SUNMatrix_cuSparse_Columns (SUNMatrix A)

This function returns the number of columns in the sparse SUNMatrix.

int SUNMatrix_cuSparse_NNZ(SUNMatrix A)

This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.
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int SUNMatrix_cuSparse_SparseType (SUNMatrix A)

This function returns the storage type (SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR) for the sparse
SUNMatrix.

realtype *SUNMatrix_cuSparse_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.
int *SUNMatrix_cuSparse_IndexValues (SUNMatrix A)

This function returns a pointer to the index value array for the sparse SUNMatrix — for the CSR format this is an
array of column indices for each nonzero entry. For the BCSR format this is an array of the column indices for
each nonzero entry in the first block only.

int *SUNMatrix_cuSparse_IndexPointers(SUNMatrix A)

This function returns a pointer to the index pointer array for the sparse SUNMatrix — for the CSR format this is
an array of the locations of the first entry of each row in the data and indexvalues arrays, for the BCSR format
this is an array of the locations of each row in the data and indexvalues arrays in the first block only.

int SUNMatrix_cuSparse_NumBlocks (SUNMatrix A)

This function returns the number of matrix blocks.

int SUNMatrix_cuSparse_BlockRows (SUNMatrix A)

This function returns the number of rows in a matrix block.

int SUNMatrix_cuSparse_BlockColumns (SUNMatrix A)

This function returns the number of columns in a matrix block.

int SUNMatrix_cuSparse_BlockNNZ (SUNMatrix A)

This function returns the number of nonzeros in each matrix block.

realtype *SUNMatrix_cuSparse_BlockData(SUNMatrix A, int blockidx)

This function returns a pointer to the location in the data array where the data for the block, blockidx, begins.
Thus, blockidx must be less than SUNMatrix_cuSparse_NumBlocks (A). The first block in the SUNMatrix
is index 0, the second block is index 1, and so on.

cusparseMatDescr_t SUNMatrix_cuSparse_MatDescr (SUNMatrix A)
This function returns the cusparseMatDescr_t object associated with the matrix.

int SUNMatrix_cuSparse_CopyToDevice (SUNMatrix A, realtype *h_data, int *h_idxptrs, int *h_idxvals)

This functions copies the matrix information to the GPU device from the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information.

The function returns SUNMAT_SUCCESS if the copy operation(s) were successful, or a nonzero error code other-
wise.

int SUNMatrix_cuSparse_CopyFromDevice (SUNMatrix A, realtype *h_data, int *h_idxptrs, int *h_idxvals)

This functions copies the matrix information from the GPU device to the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information. Otherwise:

e The h_data array must be at least SUNMatrix_cuSparse_NNZ(A)*sizeof(realtype) bytes.
e The h_idxptrs array must be at least (SUNMatrix_cuSparse_BlockDim(A)+1)*sizeof(int) bytes.
e The h_idxvals array must be at least (SUNMatrix_cuSparse_BlockNNZ(A))*sizeof(int) bytes.

The function returns SUNMAT_SUCCESS if the copy operation(s) were successful, or a nonzero error code other-
wise.
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int SUNMatrix_cuSparse_SetFixedPattern(SUNMatrix A, booleantype yesno)

This function changes the behavior of the the SUNMatZero operation on the object A. By default the matrix
sparsity pattern is not considered to be fixed, thus, the SUNMatZero operation zeros out all data array as well
as the indexvalues and indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not the indexvalues or
indexpointers arrays. Providing a value of ® or SUNFALSE for the yesno argument is equivalent to the default
behavior.

int SUNMatrix_cuSparse_SetKernelExecPolicy (SUNMatrix A, SUNCudaExecPolicy *exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the CUDA
kernels. By default the matrix is setup to use a policy which tries to leverage the structure of the matrix. See
§6.10.2 for more information about the SUNCudaExecPolicy class.

7.7.3 SUNMATRIX_CUSPARSE Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for 32-bit in-
dexing to use this module.

The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE function cus-
parseSetStream on the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE constructor.

Warning: When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.g. ARKODE), the
stream given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the package,
and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization
issues may occur.

7.8 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module, SUNMATRIX_SPARSE, is designed to work with either
compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {

sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
realtype *data;

int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation in a sparse matrix is shown in Fig. 7.2. A more complete description
of the parts of this content field is given below:
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M - number of rows
N - number of columns
NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N, and
for CSR matrices NP=M. This value is set automatically at construction based the input choice for sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of the nonzero
entries in the matrix

sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if CSC)
or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating a
sparse SUNMatrix, based on the sparse matrix storage type.

* rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.
* colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.
* colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

e rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5 x 4 matrix

O = O Wwo
SO NO W
OO O O
O O N O

could be stored as a CSC matrix in this structure as either

M
N =
NNZ

NP =

55
4;
= 8;
N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.03};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or

(continues on next page)
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(continued from previous page)

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = 3,0, 2,0, 1, 3, 4, *, *};

{1,
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in the
matrix.

Similarly, in CSR format, the same matrix could be stored as

=2 =

N 8;
NP = NM;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.03};
sparsetype = CSR_MAT;
indexvals = {1, 2, O,

indexptrs = {0, 2, 4, 5, 7, 8};

I & v

=
Nl

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S (A)

This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse) (A->content) )

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_S(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_S(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:
#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

SM_COLUMNS_S(A)

Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )
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Fig. 7.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here A
isan M x N sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data and
indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column
j entry of A (again, zero-based) denoted as A(i, j). The indexptrs array contains N+1 entries; the first N denote the
starting index of each column within the indexvals and data arrays, while the final entry points one past the final
nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of data
and indexvals indicate extra allocated space.
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SM_NNZ_S(A)

Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

SM_NP_S(A)

Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

SM_SPARSETYPE_S (A)

Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

SM_DATA_S(A)

This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data array
for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

SM_INDEXVALS_S(A)

This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the array of index
values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

SM_INDEXPTRS_S(A)

This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the array of index
pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC formats,
respectively).

Implementation:

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Sparse (e.g. SUNMatCopy_Sparse). The
module SUNMATRIX_SPARSE provides the following additional user-callable routines:
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SUNMatrix SUNSparseMatrix (sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype, SUNContext
sunctx)

This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol, int sparsetype)

This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:
* A must have type SUNMATRIX_DENSE
* droptol must be non-negative
* sparsetype must be either CSC_MAT or CSR_MAT
The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix (SUNMatrix A, realtype droptol, int sparsetype)

This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:
* A must have type SUNMATRIX_BAND
* droptol must be non-negative
e sparsetype must be either CSC_MAT or CSR_MAT.
The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

int SUNSparseMatrix_Realloc(SUNMatrix A)

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix has no wasted
space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros, indexptrs[NP]).
Returns 0 on success and 1 on failure (e.g. if the input matrix is not sparse).

void SUNSparseMatrix_Print (SUNMatrix A, FILE *outfile)

This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNSparseMatrix_Rows (SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.
sunindextype SUNSparseMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.
sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.
sunindextype SUNSparseMatrix_NP(SUNMatrix A)

This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has NP+1
entries).

int SUNSparseMatrix_SparseType (SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.
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realtype *SUNSparseMatrix_Data(SUNMatrix A)

This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype *SUNSparseMatrix_IndexValues (SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix — for CSR format this is the column
index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype *SUNSparseMatrix_IndexPointers(SUNMatrix A)

This function returns a pointer to the index pointer array for the sparse SUNMatrix — for CSR format this is the
location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the location
of the first entry of each column.

Note: Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL, NVEC-
TOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed memory. As additional
compatible vector implementations are added to SUNDIALS, these will be included within this compatibility check.

7.9 The SUNMATRIX_SLUNRLOC Module

The SUNMATRIX_SLUNRLOC module is an interface to the SuperMatrix structure provided by the SuperLU_-
DIST sparse matrix factorization and solver library written by X. Sherry Li and collaborators [7, 35, 49, 50]. It is
designed to be used with the SuperLU_DIST SUNLinearSolver module discussed in §8.15. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {
booleantype own_data;
gridinfo_t *grid;
sunindextype *row_to_proc;
pdgsmv_comm_t *gsmv_comm;
SuperMatrix  *A_super;
SuperMatrix  *ACS_super;

¥
A more complete description of the this content field is given below:
* own_data — a flag which indicates if the SUNMatrix is responsible for freeing A_super

e grid - pointer to the SuperLU_DIST structure that stores the 2D process grid

* row_to_proc — a mapping between the rows in the matrix and the process it resides on; will be NULL until the
SUNMatMatvecSetup routine is called

e gsmv_comm — pointer to the SuperLU_DIST structure that stores the communication information needed for
matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is called

* A_super — pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype =
SLU_D, Mtype = SLU_GE; must have the full diagonal present to be used with SUNMatScaleAddI routine

e ACS_super — a column-sorted version of the matrix needed to perform matrix-vector multiplication; will be
NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed module
library to link to is 1ibsundials_sunmatrixslunrloc.lib where .lib is typically . so for shared libraries and . a for
static libraries.
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7.9.1 SUNMATRIX_SLUNRLOC Functions

The SUNMATRIX_SLUNRLOC module provides the following user-callable routines:

SUNMatrix SUNMatrix_SLUNRloc (SuperMatrix *Asuper, gridinfo_t *grid, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_SLUNRLOC object. Its arguments
are a fully-allocated SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype = SLU_D, Mtype =
SLU_GE and an initialized SuperLU_DIST 2D process grid structure. It returns a SUNMatrix object if Asuper
is compatible else it returns NULL.

void SUNMatrix_SLUNRloc_Print (SUNMatrix A, FILE *fp)

This function prints the underlying SuperMatrix content. It is useful for debugging. Its arguments are the
SUNMatrix object and a FILE pointer to print to. It returns void.

SuperMatrix *SUNMatrix_SLUNRloc_SuperMatrix (SUNMatrix A)
This function returns the underlying SuperMatrix of A. Its only argument is the SUNMatrix object to access.

gridinfo_t *SUNMatrix_SLUNRloc_ProcessGrid (SUNMatrix A)

This function returns the SuperLU_DIST 2D process grid associated with A. Its only argument is the SUNMatrix
object to access.

booleantype SUNMatrix_SLUNRloc_OwnData (SUNMatrix A)

This function returns true if the SUNMatrix object is responsible for freeing the underlying SuperMatrix, oth-
erwise it returns false. Its only argument is the SUNMatrix object to access.

The SUNMATRIX_SLUNRLOC module also defines implementations of all generic SUNMatrix operations listed in
§7.2:

e SUNMatGetID_SLUNRloc —returns SUNMATRIX_SLUNRLOC
¢ SUNMatClone_SLUNRloc
¢ SUNMatDestroy_SLUNRloc

» SUNMatSpace_SLUNRloc - this only returns information for the storage within the matrix interface, i.e. storage
for row_to_proc

e SUNMatZero_SLUNRloc

e SUNMatCopy_SLUNRloc

* SUNMatScaleAdd_SLUNRloc — performs A = cA + B, where A and B must have the same sparsity pattern
e SUNMatScaleAddI_SLUNRloc — performs A = cA + I, where the diagonal of A must be present

e SUNMatMatvecSetup_SLUNRloc — initializes the SuperLU_DIST parallel communication structures needed to
perform a matrix-vector product; only needs to be called before the first call to SUNMatMatvec () or if the matrix
changed since the last setup

e SUNMatMatvec_SLUNRloc
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7.10 The SUNMATRIX_GINKGO Module

New in version 6.4.0.

The SUNMATRIX_GINKGO implementation of the SUNMatrix API provides an interface to the matrix data structure
for the Ginkgo linear algebra library [10]. Ginkgo provides several different matrix formats and linear solvers which
can run on a variety of hardware, such as NVIDIA, AMD, and Intel GPUs as well as multicore CPUs. Since Ginkgo is
a modern C++ library, SUNMATRIX_GINKGO is also written in modern C++ (it requires C++14). Unlike most other
SUNDIALS modules, it is a header only library. To use the SUNMATRIX_GINKGO SUNMatrix, users will need to
include sunmatrix/sunmatrix_ginkgo.hpp. More instructions on building SUNDIALS with Ginkgo enabled are
given in §11.1.4. For instructions on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note: Itis assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo matrices, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS.

The SUNMATRIX_GINKGO module is defined by the sundials: :ginkgo: :Matrix templated class:

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>;

7.10.1 Compatible N_Vectors

The N_Vector to use with the SUNLINEARSOLVER_GINKGO module depends on the gko::Executor uti-
lized. That is, when using the gko::CudaExecutor you should use a CUDA capable N_Vector (e.g., §6.10),
gko: :HipExecutor goes with a HIP capable N_Vector (e.g., §6.11), gko::DpcppExecutor goes with a
DPC++/SYCL capable N_Vector (e.g., §6.12), and gko: : OmpExecutor goes with a CPU based N_Vector (e.g., §6.6).
Specifically, what makes a N_Vector compatible with different Ginkgo executors is where they store the data. The GPU
enabled Ginkgo executors need the data to reside on the GPU, so the N_Vector mustimplement N_VGetDeviceArray-
Pointer () and keep the data in GPU memory. The CPU-only enabled Ginkgo executors (e.g, gko: : OmpExecutor
and gko: :ReferenceExecutor) need data to reside on the CPU and will use N_VGetArraryPointer () to access
the N_Vector data.

7.10.2 Using SUNMATRIX_GINKGO

To use the SUNMATRIX_GINKGO module, we begin by creating an instance of a Ginkgo matrix using Ginkgo’s APIL.
For example, below we create a Ginkgo sparse matrix that uses the CSR storage format and then fill the diagonal of the
matrix with ones to make an identity matrix:

auto gko_matrix{gko::matrix::Csr<sunrealtype, sunindextype>::create(gko_exec, matrix_dim)};
gko_matrix->read(gko: :matrix_data<sunrealtype, sunindextype>::diag(matrix_dim, 1.0));

After we have a Ginkgo matrix object, we wrap it in an instance of the sundials::ginkgo: :Matrix class. This
object can be provided to other SUNDIALS functions that expect a SUNMatrix object via implicit conversion, or the
Convert() method:

sundials: :ginkgo: :Matrix<gko: :matrix::Csr> matrix{gko_matrix, sunctx};
SUNMatrix Il = matrix.Convert(); // explicit conversion to SUNMatrix
SUNMatrix I2 = matrix; // implicit conversion to SUNMatrix

No further interaction with matrix is required from this point, and it is possible to to use the SUNMatrix API operating
on I1 or I2 (orif needed, via Ginkgo operations on gko_matrix).
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Warning: SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a
sundials::ginkgo: :Matrix. Doing so may result in a double free.

7.10.3 SUNMATRIX_GINKGO API

In this section we list the public API of the sundials: :ginkgo: :Matrix class.

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

Matrix() = default
Default constructor - means the matrix must be copied or moved to.

Matrix(std::shared_ptr<GkoMatType> gko_mat, SUNContext sunctx)
Constructs a Matrix from an existing Ginkgo matrix object.

Parameters
* gko_mat — A Ginkgo matrix object
» sunctx — The SUNDIALS simulation context object (SUNContext)

Matrix(Matrix &&that_matrix) noexcept
Move constructor.

Matrix(const Matrix &that_matrix)
Copy constructor (performs a deep copy).

Matrix &operator=(Matrix &&rhs) noexcept
Move assignment.

Matrix &operator=_const Matrix &rhs)

Copy assignment clones the gko: :matrix and SUNMatrix. This is a deep copy (i.e. a new data array is
created).

virtual ~Matrix() = default;
Default destructor.

std::shared_ptr<GkoMatType> GkoMtx () const
Get the underlying Ginkgo matrix object.

std::shared_ptr<const gko::Executor> GkoExec () const
Get the gko: :Executor associated with the Ginkgo matrix.

const gko::dim<2> &GkoSize () const
Get the size, i.e. gko: :dim, for the Ginkgo matrix.
operator SUNMatrix() override

Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert () const override
Explicit conversion to a SUNMatrix.
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7.11 The SUNMATRIX_KOKKOSDENSE Module

New in version 6.4.0.

The SUNMATRIX_KOKKOSDENSE SUNMatrix implementation provides a data structure for dense and dense
batched (block-diagonal) matrices using Kokkos [31, 58] and KokkosKernels [57] to support a variety of backends
including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library, the module is also writ-
ten in modern C++ (it requires C++14) as a header only library. To utilize this SUNMatrix users will need to in-
clude sunmatrix/sunmatrix_kokkosdense.hpp. More instructions on building SUNDIALS with Kokkos and
KokkosKernels enabled are given in §11.1.4. For instructions on building and using Kokkos and KokkosKernels,
refer to the Kokkos and KokkosKernels. documentation.

7.11.1 Using SUNMATRIX_KOKKOSDENSE

The SUNMATRIX_KOKKOSDENSE module is defined by the DenseMatrix templated class in the sundi-
als: :kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecSpace: :memory_space>

class DenseMatrix : public sundials::impl::BaseMatrix,
public sundials::ConvertibleTo<SUNMatrix>

To use the SUNMATRIX_KOKKOSDENSE module, we begin by constructing an instance of the Kokkos dense matrix
e.g.,

// Single matrix using the default execution space
sundials: :kokkos: :DenseMatrix<> A{rows, cols, sunctx};

// Batched (block-diagonal) matrix using the default execution space
sundials: :kokkos: :DenseMatrix<> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space
sundials: :kokkos: :DenseMatrix<Kokkos: :Cuda> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space and

// a non-default execution space instance

sundials: :kokkos: :DenseMatrix<Kokkos: :Cuda> Abatch{blocks, rows, cols,
exec_space_instance,
sunctx};

Instances of the DenseMatrix class are implicitly or explicitly (using the Convert () method) convertible to a SUN-
Matrixe.g.,

sundials: :kokkos: :DenseMatrix<> A{rows, cols, sunctx};
SUNMatrix B = A; // implicit conversion to SUNMatrix
SUNMatrix C = A.Convert(); // explicit conversion to SUNMatrix

No further interaction with a DenseMatrix is required from this point, and it is possible to use the SUNMatrix API to
operate on B or C.

Warning: SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a
sundials: :kokkos: :DenseMatrix. Doing so may result in a double free.
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The underlying DenseMatrix can be extracted from a SUNMatrix using GetDenseMat () e.g.,

auto A_dense_mat = GetDenseMat<>(A_sunmat);

The SUNMATRIX_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module (see
§6.14) and SUNLINEARSOLVER_KOKKOSDENSE linear solver module (see §8.19).

7.11.2 SUNMATRIX_KOKKOSDENSE API

In this section we list the public API of the sundials: :kokkos: :DenseMatrix class.

template<class ExeccutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecSpace::memory_space>
class DenseMatrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<cSUNMatrix>

DenseMatrix() = default
Default constructor — the matrix must be copied or moved to.

DenseMatrix(size_type rows, size_type cols, SUNContext sunctx)

Constructs a single DenseMatrix using the default execution space instance.
Parameters
e rows — number of matrix rows
¢ cols — number of matrix columns
* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type rows, size_type cols, exec_space ex, SUNContext sunctx)

Constructs a single DenseMatrix using the provided execution space instance.
Parameters
e rows — number of matrix rows
¢ cols — number of matrix columns
* exec_space — a ExecSpace instance
* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, SUNContext sunctx)
Constructs a batched (block-diagonal) DenseMatrix using the default execution space instance.

Parameters
* blocks — number of matrix blocks
¢ block_rows — number of rows in a block
* block_cols — number of columns in a block
* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, exec_space ex, SUNContext
sunctx)

Constructs a batched (block-diagonal) DenseMatrix using the provided execution space instance.
Parameters

¢ blocks — number of matrix blocks
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* block_rows — number of rows in a block

¢ block_cols — number of columns in a block

* exec_space — a ExecSpace instance

* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(DenseMatrix &&that_matrix) noexcept

Move constructor.

DenseMatrix(const DenseMatrix &that_matrix)
Copy constructor. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

DenseMatrix &operator=(DenseMatrix &&rhs) noexcept

Move assignment.

DenseMatrix &operator=_const DenseMatrix &rhs)
Copy assignment. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

virtual ~DenseMatrix() = default;
Default destructor.

exec_space ExecSpace()
Get the execution space instance used by the matrix.
view_type View()
Get the underlying Kokkos view with extents {blocks, block_rows, block_cols}.
size_type Blocks ()
Get the number of blocks i.e., extent (0).
size_type BlockRows ()

Get the number of rows in a block i.e., extent (1).

size_type BlockCols ()
Get the number of columns in a block i.e., extent (2).

size_type Rows ()

Get the number of rows in the block-diagonal matrix i.e., extent (0) * extent(l).
size_type Cols()

Get the number of columns in the block-diagonal matrix i.e., extent(0) * extent(2).
operator SUNMatrix() override

Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert () override
Explicit conversion to a SUNMatrix.
SUNMatrix Convert () const override

Explicit conversion to a SUNMatrix.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecSpace::memory_space>
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inline DenseMatrix<MatrixType> *GetDenseMat (SUNMatrix A)
Get the dense matrix wrapped by a SUNMatrix

7.12 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation, that make use of the functions in test_-
sunmatrix.c. These example functions show simple usage of the SUNMatrix family of functions. The inputs to the
examples depend on the matrix type, and are output to stdout if the example is run without the appropriate number
of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:
* Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.
* Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.
* Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.
* Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

e Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I, this test clones and copies A
to a new matrix B, computes B = —B + B, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies A to a new matrix D, clones and copies I to a new matrix C,
computes D = D + I and C' = C + A using SUNMatScaleAdd(), and then verifies that C = D.

¢ Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I, this clones and copies I to a
new matrix B, computes B = —B + I using SUNMatScaleAddI (), and verifies that the resulting matrix entries
equal 0.

¢ Test_SUNMatMatvecSetup: verifies that SUNMatMatvecSetup () can be called.

¢ Test_SUNMatMatvec Given an input matrix A and input vectors = and y such that y = Ax, this test has dif-
ferent behavior depending on whether A is square. If it is square, it clones and copies A to a new matrix B,
computes B = 3B + [ using SUNMatScaleAddI(), clones y to new vectors w and z, computes z = Bz using
SUNMatMatvec (), computes w = 3y + x using N_VLinearSum, and verifies that w == z. If A is not square,
it just clones y to a new vector z, computes :math: z=Ax using SUNMatMatvec (), and verifies that y = z.

* Test_SUNMatSpace: verifies that SUNMatSpace () can be called, and outputs the results to stdout.

7.13 SUNMatrix functions used by IDAS

In Table 7.2, we list the matrix functions in the SUNMatrix module used within the IDAS package. The table also shows,
for each function, which of the code modules uses the function. The main IDAS integrator does not call any SUNMatrix
functions directly, so the table columns are specific to the IDALS and IDABBDPRE preconditioner modules. We
further note that the IDALS interface only utilizes these routines when supplied with a matrix-based linear solver, i.e.,
the SUNMatrix object passed to IDASetLinearSolver () was not NULL.

At this point, we should emphasize that the IDAS user does not need to know anything about the usage of matrix
functions by the IDAS code modules in order to use IDAS. The information is presented as an implementation detail
for the interested reader.
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Table 7.2: List of matrix functions usage by IDAS code modules

IDALS IDABBDPRE
SUNMatGetID() X

SUNMatDestroy () X
SUNMatZero() X X
SUNMatSpace () T

The matrix functions listed with a 1 symbol are optionally used, in that these are only called if they are implemented
in the SUNMatrix module that is being used (i.e. their function pointers are non-NULL). The matrix functions listed in
§7.1 that are not used by IDAS are: SUNMatCopy (), SUNMatClone (), SUNMatScaleAdd(), SUNMatScaleAddI()
and SUNMatMatvec (). Therefore a user-supplied SUNMatrix module for IDAS could omit these functions.

We note that the IDABBDPRE preconditioner module is hard-coded to use the SUNDIALS-supplied band SUNMatrix
type, so the most useful information above for user-supplied SUNMatrix implementations is the column relating the
IDALS requirements.
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Linear Algebraic Solvers

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinearSolver, or “SUNLinSol”, API. This allows SUNDIALS pack-
ages to utilize any valid SUNLinSol implementation that provides a set of required functions. These functions can be
divided into three categories. The first are the core linear solver functions. The second group consists of “set” routines
to supply the linear solver object with functions provided by the SUNDIALS package, or for modification of solver
parameters. The last group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the
linear solver. All of these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS N_Vector, and optionally
SUNMatrix, modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their own
N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear solvers
or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers are also
supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to balance
error between solution components and to accelerate convergence of the linear solver. To this end, instead of solving
the linear system Ax = b directly, these apply the underlying iterative algorithm to the transformed system

Az =b (8.1)
where
A=S8, P AP Sy,
b= S P 'b, (8.2)
T = SQPQI,
and where

e P is the left preconditioner,
* P, is the right preconditioner,
» S is a diagonal matrix of scale factors for P, Ip,

¢ S5 is a diagonal matrix of scale factors for Pox.
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SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned residual
meeting a prescribed tolerance, i.e.,

HE _ A;zH < tol.
2

When provided an iterative SUNLinSol implementation that does not support the scaling matrices S7 and Ss, the
SUNDIALS packages will adjust the value of tol accordingly (see the iterative linear tolerance section that follows for
more details). In this case, they instead request that iterative linear solvers stop based on the criterion

| Prto— Pyl Az ||, < tol.

We note that the corresponding adjustments to tol in this case may not be optimal, in that they cannot balance error
between specific entries of the solution z, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in §8.1.1 — §8.1.3. This is followed
by the definition of functions supplied to a linear solver implementation in §8.1.4. The linear solver return codes
are described in Table 8.1. The SUNLinearSolver type and the generic SUNLinSol module are defined in §8.1.6.
§8.1.8 lists the requirements for supplying a custom SUNLinSol module and discusses some intended use cases. Users
wishing to supply their own SUNLinSol module are encouraged to use the SUNLinSol implementations provided with
SUNDIALS as a template for supplying custom linear solver modules. The section that then follows describes the
SUNLinSol functions required by this SUNDIALS package, and provides additional package specific details. Then the
remaining sections of this chapter present the SUNLinSol modules provided with SUNDIALS.

8.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize this APL
These functions can be divided into three categories. The first are the core linear solver functions. The second consist
of “set” routines to supply the linear solver with functions provided by the SUNDIALS packages and to modify solver
parameters. The final group consists of “get” routines for retrieving linear solver statistics. All of these functions are
defined in the header file sundials/sundials_linearsolver.h.

8.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions: SUNLinSolGetType () returns the linear solver
type, and SUNLinSolSolve () solves the linear system Ax = b.

The remaining optional functions return the solver ID (SUNLinSolGetID()), initialize the linear solver object once all
solver-specific options have been set (SUNLinSolInitialize()), set up the linear solver object to utilize an updated
matrix A (SUNLinSolSetup()), and destroy a linear solver object (SUNLinSolFree()).

SUNLinearSolver_Type SUNLinSolGetType (SUNLinearSolver LS)

Returns the type identifier for the linear solver LS.
Return value:

e SUNLINEARSOLVER_DIRECT (0) — the SUNLinSol module requires a matrix, and computes an “exact”
solution to the linear system defined by that matrix.
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e SUNLINEARSOLVER_ITERATIVE (1) —the SUNLinSol module does not require a matrix (though one may
be provided), and computes an inexact solution to the linear system using a matrix-free iterative algorithm.
That is it solves the linear system defined by the package-supplied ATimes routine (see SUNLinSolSe-
tATimes () below), even if that linear system differs from the one encoded in the matrix object (if one is
provided). As the solver computes the solution only inexactly (or may diverge), the linear solver should
check for solution convergence/accuracy as appropriate.

e SUNLINEARSOLVER_MATRIX_ITERATIVE (2) —the SUNLinSol module requires a matrix, and computes
an inexact solution to the linear system defined by that matrix using an iterative algorithm. That is it solves
the linear system defined by the matrix object even if that linear system differs from that encoded by the
package-supplied ATimes routine. As the solver computes the solution only inexactly (or may diverge), the
linear solver should check for solution convergence/accuracy as appropriate.

e SUNLINEARSOLVER_MATRIX_EMBEDDED (3) — the SUNLinSol module sets up and solves the specified
linear system at each linear solve call. Any matrix-related data structures are held internally to the linear
solver itself, and are not provided by the SUNDIALS package.

Usage:

type = SUNLinSolGetType(LS);

Note: See §8.1.8.1 for more information on intended use cases corresponding to the linear solver type.

SUNLinearSolver_ID SUNLinSolGetID(SUNLinearSolver LS)

Returns a non-negative linear solver identifier (of type int) for the linear solver LS.
Return value:

Non-negative linear solver identifier (of type int), defined by the enumeration SUNLinearSolver_-
ID, with values shown in Table 8.2 and defined in the sundials_linearsolver.h header file.

Usage:

id = SUNLinSolGetID(LS);

Note: It is recommended that a user-supplied SUNLinearSolver return the SUNLINEARSOLVER_CUSTOM iden-
tifier.

int SUNLinSolInitialize (SUNLinearSolver LS)

Performs linear solver initialization (assuming that all solver-specific options have been set).
Return value:

Zero for a successful call, and a negative value for a failure. Ideally, this should return one of the
generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolInitialize(LS);

int SUNLinSolSetup (SUNLinearSolver LS, SUNMatrix A)

Performs any linear solver setup needed, based on an updated system SUNMatrix A. This may be called frequently
(e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the type of integrator
and/or nonlinear solver requesting the solves.

Return value:
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Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolSetup(LS, A);

int SUNLinSolSolve (SUNLinearSolver LS, SUNMatrix A, N_Vector X, N_Vector b, realtype tol)
This required function solves a linear system Ax = b.

Arguments:
e LS —a SUNLinSol object.
* A —a SUNMatrix object.

¢ x —an N_Vector object containing the initial guess for the solution of the linear system on input, and the
solution to the linear system upon return.

* b—an N_Vector object containing the linear system right-hand side.
e tol — the desired linear solver tolerance.
Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 8.1.

Notes:
Direct solvers: can ignore the ol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore the SUN-
Matrix input A, and should rely on the matrix-vector product function supplied through the routine
SUNLinSolSetATimes().

Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or SUNLINEARSOLVER_-
MATRIX_ITERATIVE) should attempt to solve to the specified tolerance to! in a weighted 2-norm. If
the solver does not support scaling then it should just use a 2-norm.

Matrix-embedded solvers: should ignore the SUNMatrix input A as this will be NULL. It is assumed
that within this function, the solver will call interface routines from the relevant SUNDIALS package
to directly form the linear system matrix A, and then solve Ax = b before returning with the solution
xZ.

Usage:

retval = SUNLinSolSolve(LS, A, x, b, tol);

int SUNLinSolFree (SUNLinearSolver LS)

Frees memory allocated by the linear solver.
Return value:

Zero for a successful call, and a negative value for a failure. Ideally, this should return one of the
generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolFree(LS);
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8.1.2 SUNLinearSolver ‘“set” functions

The following functions supply linear solver modules with functions defined by the SUNDIALS packages and modify
solver parameters. Only the routine for setting the matrix-vector product routine is required, and even then is only
required for matrix-free linear solver modules. Otherwise, all other set functions are optional. SUNLinSol implemen-
tations that do not provide the functionality for any optional routine should leave the corresponding function pointer
NULL instead of supplying a dummy routine.

int SUNLinSolSetATimes (SUNLinearSolver LS, void *A_data, SUNATimesFn ATimes)

Required for matrix-free linear solvers (otherwise optional).

Provides a SUNATimesFn function pointer, as well as a void* pointer to a data structure used by this routine, to
the linear solver object LS. SUNDIALS packages call this function to set the matrix-vector product function to
either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine.

Return value:

Zero for a successful call, and a negative value for a failure. Ideally, this should return one of the
generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolSetATimes(LS, A_data, ATimes);

int SUNLinSolSetPreconditioner (SUNLinearSolver LS, void *P_data, SUNPSetupFn Pset, SUNPSolveFn Psol)

This optional routine provides SUNPSetupFn and SUNPSolveFn function pointers that implement the precon-
ditioner solves P, ! and Py ! from (8.2). This routine is called by a SUNDIALS package, which provides
translation between the generic Pset and Psol calls and the package- or user-supplied routines.

Return value:

Zero for a successful call, and a negative value for a failure. Ideally, this should return one of the
generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolSetPreconditioner (LS, Pdata, Pset, Psol);

int SUNLinSolSetScalingVectors (SUNLinearSolver LS, N_Vector s1, N_Vector s2)

This optional routine provides left/right scaling vectors for the linear system solve. Here, s/ and s2 are N_-
Vectors of positive scale factors containing the diagonal of the matrices S; and S from (8.2), respectively.
Neither vector needs to be tested for positivity, and a NULL argument for either indicates that the corresponding
scaling matrix is the identity.

Return value:

Zero for a successful call, and a negative value for a failure. Ideally, this should return one of the
generic error codes listed in Table 8.1.

Usage:
retval = SUNLinSolSetScalingVectors(LS, sl, s2);

int SUNLinSolSetZeroGuess (SUNLinearSolver LS, booleantype onoff)

This optional routine indicates if the upcoming SUN1inSolSolve () call will be made with a zero initial guess
(SUNTRUE) or a non-zero initial guess (SUNFALSE).

Return value:
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Zero for a successful call, and a negative value for a failure. Ideally, this should return one of the
generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolSetZeroGuess(LS, onoff);

Notes:

It is assumed that the initial guess status is not retained across calls to SUNLinSolSolve (). As such,
the linear solver interfaces in each of the SUNDIALS packages call SUNLinSolSetZeroGuess ()
prior to each call to SUNLinSolSolve().

8.1.3 SUNLinearSolver ‘“get” functions

The following functions allow SUNDIALS packages to retrieve results from a linear solve. All routines are optional.

int SUNLinSolNumIters (SUNLinearSolver LS)

This optional routine should return the number of linear iterations performed in the most-recent “solve” call.

Usage:

its = SUNLinSolNumIters(LS);

realtype SUNLinSolResNorm (SUNLinearSolver LS)

This optional routine should return the final residual norm from the most-recent “solve” call.

Usage:

rnorm = SUNLinSolResNorm(LS);

N_Vector SUNLinSolResid (SUNLinearSolver LS)

If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e., either the initial guess or the preconditioner is sufficiently accurate), then this
optional routine may be called by the SUNDIALS package. This routine should return the N_Vector containing
the preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid(LS);

Notes:

Since N_Vector is actually a pointer, and the results are not modified, this routine should not require
additional memory allocation. If the SUNLinSol object does not retain a vector for this purpose, then
this function pointer should be set to NULL in the implementation.

sunindextype SUNLinSolLastFlag(SUNLinearSolver LS)

This optional routine should return the last error flag encountered within the linear solver. Although not called
by the SUNDIALS packages directly, this may be called by the user to investigate linear solver issues after a
failed solve.

Usage:

1flag = SUNLinLastFlag(LS);
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int SUNLinSolSpace (SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)

This optional routine should return the storage requirements for the linear solver LS:
e [rwisalong int containing the number of realtype words
e [iwis along int containing the number of integer words.
The return value is an integer flag denoting success/failure of the operation.
This function is advisory only, for use by users to help determine their total space requirements.

Usage:

retval = SUNLinSolSpace(LS, &lrw, &liw);

8.1.4 Functions provided by SUNDIALS packages

To interface with SUNLinSol modules, the SUNDIALS packages supply a variety of routines for evaluating the matrix-
vector product, and setting up and applying the preconditioner. These package-provided routines translate between the
user-supplied ODE, DAE, or nonlinear systems and the generic linear solver API. The function types for these routines
are defined in the header file sundials/sundials_iterative.h, and are described below.

typedef int (*SUNATimesFn)(void *A_data, N_Vector v, N_Vector z)

Computes the action of a matrix on a vector, performing the operation z <— Av. Memory for z will already be
allocated prior to calling this function. The parameter A_data is a pointer to any information about A which the
function needs in order to do its job. The vector v should be left unchanged.

Return value:
Zero for a successful call, and non-zero upon failure.
typedef int (*SUNPSetupFn)(void *P_data)
Sets up any requisite problem data in preparation for calls to the corresponding SUNPSolveFn.
Return value:
Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSolveFn)(void *P_data, N_Vector r, N_Vector z, realtype tol, int Ir)

Solves the preconditioner equation Pz = r for the vector z. Memory for z will already be allocated prior to
calling this function. The parameter P_data is a pointer to any information about P which the function needs in
order to do its job (set up by the corresponding SUNPSetupFn). The parameter Ir is input, and indicates whether
P is to be taken as the left or right preconditioner: Ir = 1 for left and /r = 2 for right. If preconditioning is on
one side only, /r can be ignored. If the preconditioner is iterative, then it should strive to solve the preconditioner
equation so that

|1Pz — 7||wms < tol
where the error weight vector for the WRMS norm may be accessed from the main package memory structure.
The vector r should not be modified by the SUNPSolveFn.
Return value:

Zero for a successful call, a negative value for an unrecoverable failure condition, or a positive value
for a recoverable failure condition (thus the calling routine may reattempt the solution after updating
preconditioner data).
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8.1.5 SUNLinearSolver return codes

The functions provided to SUNLinSol modules by each SUNDIALS package, and functions within the SUNDIALS-
provided SUNLinSol implementations, utilize a common set of return codes, listed in Table 8.1. These adhere to a
common pattern:

* 0O indicates success
* a positive value corresponds to a recoverable failure, and
* anegative value indicates a non-recoverable failure.

Aside from this pattern, the actual values of each error code provide additional information to the user in case of a
linear solver failure.

Table 8.1: SUNLinSol error codes

Error code Value Meaning

SUNLS_SUCCESS 0 successful call or converged solve
SUNLS_MEM_NULL -801  the memory argument to the function is NULL
SUNLS_TILL_INPUT -802  anillegal input has been provided to the function
SUNLS_MEM_FAIL -803  failed memory access or allocation
SUNLS_ATIMES_NULL -804  the Atimes function is NULL

SUNLS_ATIMES_FAIL_UN- -805 an unrecoverable failure occurred in the ATimes routine
REC

SUNLS_PSET_FAIL_UNREC -806 an unrecoverable failure occurred in the Pset routine
SUNLS_PSOLVE_NULL -807  the preconditioner solve function is NULL
SUNLS_PSOLVE_FAIL_UN- -808 an unrecoverable failure occurred in the Psolve routine
REC

SUNLS_PACKAGE_FATIL_- -809  an unrecoverable failure occurred in an external linear solver package

UNREC

SUNLS_GS_FAIL -810 a  failure occurred during Gram-Schmidt orthogonalization
(SPGMR/SPFGMR)

SUNLS_QRSOL_FAIL -811 a singular $R$ matrix was encountered in a QR factorization
(SPGMR/SPFGMR)

SUNLS_VECTOROP_ERR -812  avector operation error occurred

SUNLS_RES_REDUCED 801 an iterative solver reduced the residual, but did not converge to the desired
tolerance

SUNLS_CONV_FAIL 802 an iterative solver did not converge (and the residual was not reduced)

SUNLS_ATIMES_FAIL_REC 803 a recoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_REC 804 a recoverable failure occurred in the Pset routine

SUNLS_PSOLVE_FAIL_REC 805 a recoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FATIL_- 806 a recoverable failure occurred in an external linear solver package

REC

SUNLS_QRFACT_FAIL 807 a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

SUNLS_LUFACT_FAIL 808 a singular matrix was encountered during a LU factorization

328 Chapter 8. Linear Algebraic Solvers



User Documentation for IDAS, v5.5.1

8.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with specific SUNLinSol implementations through the generic SUNLinearSolver ab-
stract base class. The SUNLinearSolver type is a pointer to a structure containing an implementation-dependent
content field, and an ops field, and is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver
and the generic structure is defined as

struct _generic_SUNLinearSolver {

void *content;

struct _generic_SUNLinearSolver_Ops *ops;
3

where the _generic_SUNLinearSolver_Ops structure is alist of pointers to the various actual linear solver operations
provided by a specific implementation. The _generic_SUNLinearSolver_Ops structure is defined as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype) (SUNLinearSolver);
SUNLinearSolver_ID (*getid) (SUNLinearSolver);

int (*setatimes) (SUNLinearSolver, void*, SUNATimesFn);
int (*setpreconditioner) (SUNLinearSolver, void*,

SUNPSetupFn, SUNPSolveFn);
int (*setscalingvectors) (SUNLinearSolver,

N_Vector, N_Vector);

int (*setzeroguess) (SUNLinearSolver, booleantype);

int (*initialize) (SUNLinearSolver);

int (*setup) (SUNLinearSolver, SUNMatrix);

int (*solve) (SUNLinearSolver, SUNMatrix, N_Vector,
N_Vector, realtype);

int (*numiters) (SUNLinearSolver);

realtype (*resnorm) (SUNLinearSolver);

sunindextype (*lastflag) (SUNLinearSolver) ;

int (*space) (SUNLinearSolver, long int*, long int*);

N_Vector (*resid) (SUNLinearSolver) ;

int (*free) (SUNLinearSolver);

};

The generic SUNLinSol class defines and implements the linear solver operations defined in §8.1.1 — §8.1.3. These
routines are in fact only wrappers to the linear solver operations defined by a particular SUNLinSol implementation,
which are accessed through the ops field of the SUNLinearSolver structure. To illustrate this point we show below the
implementation of a typical linear solver operation from the SUNLinearSolver base class, namely SUNLinSolIni-
tialize(), that initializes a SUNLinearSolver object for use after it has been created and configured, and returns a
flag denoting a successful or failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

¥
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8.1.7 Compatibility of SUNLinearSolver modules

Not all SUNLinearSolver implementations are compatible with all SUNMatrix and N_Vector implementations pro-
vided in SUNDIALS. More specifically, all of the SUNDIALS iterative linear solvers (SPGMR, SPFGMR, SPBCGS,
SPTFOMR, and PCG) are compatible with all of the SUNDIALS N_Vector modules, but the matrix-based direct
SUNLinSol modules are specifically designed to work with distinct SUNMatrix and N_Vector modules. In the list
below, we summarize the compatibility of each matrix-based SUNLinearSolver module with the various SUNMatrix
and N_Vector modules. For a more thorough discussion of these compatibilities, we defer to the documentation for
each individual SUNLinSol module in the sections that follow.

* Dense

— SUNMatrix: Dense or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, or user-supplied
* LapackDense

— SUNMatrix: Dense or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, or user-supplied
* Band

— SUNMatrix: Band or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, or user-supplied
e LapackBand

— SUNMatrix: Band or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, or user-supplied
* KLU

— SUNMatrix: Sparse or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, or user-supplied
e SuperLU_MT

— SUNMatrix: Sparse or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, or user-supplied
* SuperLU_Dist

— SUNMatrix: SLUNRLOC or user-supplied

— N_Vector: Serial, OpenMP, Pthreads, Parallel, *hypre*, PETSc, or user-supplied
* Magma Dense

— SUNMatrix: Magma Dense or user-supplied

— N_Vector: HIP, RAJA, or user-supplied
* OneMKL Dense

— SUNMatrix: One MKL Dense or user-supplied

— N_Vector: SYCL, RAJA, or user-supplied
e cuSolverSp batchQR

— SUNMatrix: cuSparse or user-supplied

— N_Vector: CUDA, RAJA, or user-supplied
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8.1.8 Implementing a custom SUNLinearSolver module

A particular implementation of the SUNLinearSolver module must:
* Specify the content field of the SUNLinSol module.

* Define and implement the required linear solver operations.

Note: The names of these routines should be unique to that implementation in order to permit using more than
one SUNLinSol module (each with different SUNLinearSolver internal data representations) in the same code.

 Define and implement user-callable constructor and destructor routines to create and free a SUNLinearSolver
with the new content field and with ops pointing to the new linear solver operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in the ops structure. This
allows the SUNDIALS package that is using the SUNLinSol object to know whether the associated functionality is
supported.

To aid in the creation of custom SUNLinearSolver modules the generic SUNLinearSolver module provides the
utility function SUNLinSolNewEmpty (). When used in custom SUNLinearSolver constructors this function will
ease the introduction of any new optional linear solver operations to the SUNLinearSolver API by ensuring that only
required operations need to be set.

SUNLinearSolver SUNLinSolNewEmpty ()

This function allocates a new generic SUNLinearSolver object and initializes its content pointer and the func-
tion pointers in the operations structure to NULL.

Return value:

If successful, this function returns a SUNLinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

void SUNLinSolFreeEmpty (SUNLinearSolver LS)

This routine frees the generic SUNLinearSolver object, under the assumption that any implementation-specific
data that was allocated within the underlying content structure has already been freed. It will additionally test
whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:
* LS —a SUNLinearSolver object
Additionally, a SUNLinearSolver implementation may do the following:

* Define and implement additional user-callable “set” routines acting on the SUNLinearSolver, e.g., for setting
various configuration options to tune the linear solver for a particular problem.

* Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for returning various
solve statistics.

Each SUNLinSol implementation included in SUNDIALS has a unique identifier specified in enumeration and shown
in Table 8.2. It is recommended that a user-supplied SUNLinSol implementation use the SUNLINEARSOLVER_CUSTOM
identifier.
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Table 8.2: Identifiers associated with SUNLinearSolver modules sup-

plied with SUNDIALS
SUNLinSol ID Linear solver type ID
Value
SUNLINEARSOLVER_BAND Banded direct linear solver (internal) 0
SUNLINEARSOLVER_DENSE Dense direct linear solver (internal) 1
SUNLINEARSOLVER_KLU Sparse direct linear solver (KLU) 2
SUNLINEARSOLVER_LAPACKBAND Banded direct linear solver (LAPACK) 3
SUNLINEARSOLVER_LAPACKDENSE Dense direct linear solver (LAPACK) 4
SUNLINEARSOLVER_PCG Preconditioned conjugate gradient iterative solver 5
SUNLINEARSOLVER_SPBCGS Scaled-preconditioned BiCGStab iterative solver 6
SUNLINEARSOLVER_SPFGMR Scaled-preconditioned FGMRES iterative solver 7
SUNLINEARSOLVER_SPGMR Scaled-preconditioned GMRES iterative solver 8
SUNLINEARSOLVER_SPTFQMR Scaled-preconditioned TFQMR iterative solver 9
SUNLINEARSOLVER_SUPERLUDIST Parallel sparse direct linear solver (SuperLU_Dist) 10
SUNLINEARSOLVER_SUPERLUMT Threaded sparse direct linear solver (SuperLU_- 11
MT)
SUNLINEARSOLVER_CUSOLVERSP._- Sparse direct linear solver (CUDA) 12
BATCHQR
SUNLINEARSOLVER_MAGMADENSE Dense or block-dense direct linear solver 13
(MAGMA)
SUNLINEARSOLVER_ONEMKLDENSE Dense or block-dense direct linear solver 14
(OneMKL)
SUNLINEARSOLVER_CUSTOM User-provided custom linear solver 15

8.1.8.1 Intended use cases

The SUNLinSol and SUNMATRIX APIs are designed to require a minimal set of routines to ease interfacing with
custom or third-party linear solver libraries. Many external solvers provide routines with similar functionality and thus
may require minimal effort to wrap within custom SUNMATRIX and SUNLinSol implementations. As SUNDIALS
packages utilize generic SUNLinSol modules they may naturally leverage user-supplied SUNLinearSolver imple-
mentations, thus there exist a wide range of possible linear solver combinations. Some intended use cases for both the
SUNDIALS-provided and user-supplied SUNLinSol modules are discussd in the sections below.

Direct linear solvers

Direct linear solver modules require a matrix and compute an “exact” solution to the linear system defined by the matrix.
SUNDIALS packages strive to amortize the high cost of matrix construction by reusing matrix information for multiple
nonlinear iterations or time steps. As a result, each package’s linear solver interface recomputes matrix information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided by, or interfaced with,
SUNDIALS can leverage this infrastructure with minimal effort. To do so, a user must implement custom SUNMA-
TRIX and SUNLinSol wrappers for the desired matrix format and/or linear solver following the APIs described in §7
and §8. This user-supplied SUNLinSol module must then self-identify as having SUNLINEARSOLVER_DIRECT type.
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Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix, and instead compute an inexact solution to the linear
system defined by the package-supplied ATimes routine. SUNDIALS supplies multiple scaled, preconditioned iterative
SUNLinSol modules that support scaling, allowing packages to handle non-dimensionalization, and users to define
variables and equations as natural in their applications. However, for linear solvers that do not support left/right scaling,
SUNDIALS packages must instead adjust the tolerance supplied to the linear solver to compensate (see the iterative
linear tolerance section that follows for more details) — this strategy may be non-optimal since it cannot handle situations
where the magnitudes of different solution components or equations vary dramatically within a single application.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, SUNDIALS a user must
implement a custom SUNLinSol wrapper for the linear solver following the API described in §8. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_ITERATIVE rype.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to the linear system
defined by the matrix. This matrix will be updated infrequently and resued across multiple solves to amortize the cost
of matrix construction. As in the direct linear solver case, only thin SUNMATRIX and SUNLinSol wrappers for the
underlying matrix and linear solver structures need to be created to utilize such a linear solver. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_MATRIX_ITERATIVE fype.

At present, SUNDIALS has one example problem that uses this approach for wrapping a structured-grid matrix, linear
solver, and preconditioner from the hypre library; this may be used as a template for other customized implementations
(see examples/arkode/CXX_parhyp/ark_heat2D_hypre.cpp).

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver where the matrix is purely for preconditioning and
the linear system is defined by the package-supplied ATimes routine, we envision two current possibilities.

The preferred approach is for users to employ one of the SUNDIALS scaled, preconditioned iterative linear solver
implementations (SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS (), SUNLinSol_SPTFQMR(),
or SUNLinSol_PCG()) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing with
the corresponding matrix-based linear solver, can be handled through a package’s preconditioner “setup” and “solve”
functionality without creating SUNMATRIX and SUNLinSol implementations. This usage mode is recommended
primarily because the SUNDIALS-provided modules support variable and equation scaling as described above.

A second approach supported by the linear solver APIs is as follows. If the SUNLinSol implementation is matrix-
based, self-identifies as having SUNLINEARSOLVER_ITERATIVE fype, and also provides a non-NULL SUNLinSolSe-
tATimes () routine, then each SUNDIALS package will call that routine to attach its package-specific matrix-vector
product routine to the SUNLinSol object. The SUNDIALS package will then call the SUNLinSol-provided SUNLin-
SolSetup() routine (infrequently) to update matrix information, but will provide current matrix-vector products to
the SUNLinSol implementation through the package-supplied SUNATimesFn routine.
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Application-specific linear solvers with embedded matrix structure

Many applications can exploit additional linear system structure arising from to the implicit couplings in their model
equations. In certain circumstances, the linear solve Az = b may be performed without the need for a global system
matrix A, as the unformed A may be block diagonal or block triangular, and thus the overall linear solve may be per-
formed through a sequence of smaller linear solves. In other circumstances, a linear system solve may be accomplished
via specialized fast solvers, such as the fast Fourier transform, fast multipole method, or treecode, in which case no
matrix structure may be explicitly necessary. In many of the above situations, construction and preprocessing of the
linear system matrix A may be inexpensive, and thus increased performance may be possible if the current linear system
information is used within every solve (instead of being lagged, as occurs with matrix-based solvers that reuse A).

To support such application-specific situations, SUNDIALS supports user-provided linear solvers with the SUNLINEAR -
SOLVER_MATRIX_EMBEDDED type. For an application to leverage this support, it should define a custom SUNLinSol
implementation having this type, that only needs to implement the required SUNLinSolGetType() and SUNLin-
SolSolve() operations. Within SUNLinSolSolve (), the linear solver implementation should call package-specific
interface routines (e.g., ARKStepGetNonlinearSystemData, CVodeGetNonlinearSystemData, IDAGetNonlin-
earSystemData, ARKStepGetCurrentGamma, CVodeGetCurrentGamma, IDAGetCurrentCj, or MRIStepGetCur-
rentGamma) to construct the relevant system matrix A (or portions thereof), solve the linear system Az = b, and return
the solution vector x.

We note that when attaching this custom SUNLinearSolver object with the relevant SUNDIALS package SetLinear-
Solver routine, the input SUNMatrix A should be set to NULL.

For templates of such user-provided “matrix-embedded” SUNLinSol implementations, see the SUNDIALS exam-
ples ark_analytic_mels.c, cvAnalytic_mels.c, cvsAnalytic_mels.c, idaAnalytic_mels.c, and idasAn-
alytic_mels.c.

8.2 IDAS SUNLinearSolver interface

Table 8.3 below lists the SUNLinearSolver module linear solver functions used within the IDALS interface. As
with the SUNMatrix module, we emphasize that the IDA user does not need to know detailed usage of linear solver
functions by the IDA code modules in order to use IDA. The information is presented as an implementation detail for
the interested reader.

The linear solver functions listed below are marked with ‘x’ to indicate that they are required, or with { to indicate that
they are only called if they are non-NULL in the SUNLinearSolver implementation that is being used. Note:

1. Although IDALS does not call SUNLinSolLastFlag directly, this routine is available for users to query linear
solver issues directly.

2. Although IDALS does not call SUNLinSolFree directly, this routine should be available for users to call when
cleaning up from a simulation.
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Table 8.3: List of linear solver function usage in the IDALS interface

DIRECT ITERATIVE MATRIX _ITERATIVE

SUNLinSolGetType() X X X
SUNLinSolSetATimes () T X T
SUNLinSolSetPreconditioner() t T 1
SUNLinSolSetScalingVectors() T 1
SUNLinSolInitialize() X X X
SUNLinSolSetup() X X X
SUNLinSolSolve() X X X
SUNLinSolNumIters() X X
SUNLinSolResid() X X
L SUNLinSolLastFlag()

2SUNLinSolFree()

SUNLinSolSpace() T T T

Since there are a wide range of potential SUNLinearSolver use cases, the following subsections describe some details
of the IDALS interface, in the case that interested users wish to develop custom SUNLinearSolver modules.

8.2.1 Lagged matrix information

If the SUNLinearSolver object self-identifies as having type SUNLINEARSOLVER_DIRECT or SUNLINEARSOLVER_-
MATRIX_ITERATIVE, then the SUNLinearSolver object solves a linear system defined by a SUNMatrix object. IDALS
will update the matrix information infrequently according to the strategies outlined in §2. To this end, we differentiate

F F -
between the desired linear system Jx = b with J = (% — ¢ ?’9) , and the actual linear system Jz = b with
Y Y
- OF OF
J=—=—-¢—-,
oy 7oy

where the overlines indicate the lagged versions of these numbers and matrices.

Since IDALS updates the SUNMatrix objects infrequently and it is likely that ¢; # ¢;, then typically J # J. Thus
after calling the SUNLinearSolver-provided SUNLinSolSolve routine, we test whether f—j # 1, and if this is the

z.
J
case we scale the solution Z to correct the linear system solution x via

2

r=————7=.
].+Cj/5j

(8.3)

The motivation for this selection of the scaling factor ¢ = 2/(1 + ¢;/¢;) is discussed in detail in [15, 38]. In short, if
we consider a stationary iteration for the linear system as consisting of a solve with .J followed by scaling by ¢, then
for a linear constant-coeflicient problem, the error in the solution vector will be reduced at each iteration by the error
matrix £ = I — ¢J~1J, with a convergence rate given by the spectral radius of F. Assuming that stiff systems have a
spectrum spread widely over the left half-plane, c is chosen to minimize the magnitude of the eigenvalues of E.
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8.2.2 Iterative linear solver tolerance

If the SUNLinearSolver object self-identifies as having type SUNLINEARSOLVER_ITERATIVE or SUNLINEAR-
SOLVER_MATRIX_ITERATIVE then IDALS will set the input tolerance delta as described in §2.2. However, if the
iterative linear solver does not support scaling matrices (i.e., the SUNLinSolSetScalingVectors routine is NULL),
then IDALS will attempt to adjust the linear solver tolerance to account for this lack of functionality. To this end, the
following assumptions are made:

1. All solution components have similar magnitude; hence the error weight vector W used in the WRMS norm (see
§2.2) should satisfy the assumption

Wi =~ Whean, for i=0,...,n—1.

2. The SUNLinearSolver object uses a standard 2-norm to measure convergence.

Since IDA uses identical left and right scaling matrices, 51 = S2 = S = diag(W), then the linear solver convergence
requirement is converted as follows (using the notation from equations (8.1) — (8.2)):

b - 43| <l
& ||SPrth— SP Az, < tol

n—1
s 3w (P - Ax)),)” < ol?
1=0
n—1 )
& Wl S [(P7H(b— Ax)))]” < tol?
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_ tol
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Therefore the tolerance scaling factor

Wmean = ||WH2/\/7;

is computed and the scaled tolerance delta= tol/W,,cqn is supplied to the SUNLinearSolver object.

8.3 The SUNLinSol_Band Module

The SUNLinSol_Band implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations NVECTOR_-
SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

8.3.1 SUNLinSol_Band Usage

The header file to be included when using this module is sunlinsol/sunlinsol_band.h. The SUNLinSol_Band
module is accessible from all SUNDIALS packages without linking to the 1ibsundials_sunlinsolband module
library.

The SUNLinSol_Band module provides the following user-callable constructor routine:
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SUNLinearSolver SUNLinSol_Band (N_Vector y, SUNMatrix A, SUNContext sunctx)

This function creates and allocates memory for a band SUNLinearSolver.
Arguments:

* y — vector used to determine the linear system size

* A — matrix used to assess compatibility

* sunctx —the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Band object, or NULL if either A or y are incompatible.

Notes:

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this

compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth

storage for the LU factorization.
For backwards compatibility, we also provide the following wrapper function:

SUNLinearSolver SUNBandLinearSolver (N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_Band (), with identical input and output arguments.

8.3.2 SUNLinSol_Band Description

The SUNLinSol_Band module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;
};
These entries of the content field contain the following information:
* N - size of the linear system,
* pivots - index array for partial pivoting in LU factorization,

* last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

* The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU, where P is a permutation

matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND object A, with pivoting information encoding
P stored in the pivots array.

The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.

A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth m1, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth m1.
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The SUNLinSol_Band module defines band implementations of all “direct” linear solver operations listed in §8.1:
e SUNLinSolGetType_Band
* SUNLinSolInitialize_Band - this does nothing, since all consistency checks are performed at solver creation.
* SUNLinSolSetup_Band — this performs the LU factorization.
e SUNLinSolSolve_Band — this uses the LU factors and pivots array to perform the solve.
e SUNLinSolLastFlag_Band

e SUNLinSolSpace_Band - this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

e SUNLinSolFree_Band

8.4 The SUNLIinSol_Dense Module

The SUNLinSol_Dense implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

8.4.1 SUNLIinSol_Dense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_dense.h. The SUNLinSol_Dense
module is accessible from all SUNDIALS solvers without linking to the 1ibsundials_sunlinsoldense module
library.

The module SUNLinSol_Dense provides the following user-callable constructor routine:
SUNLinearSolver SUNLinSol_Dense (N_Vector 'y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a dense SUNLinearSolver.

Arguments:
* y —vector used to determine the linear system size.
* A — matrix used to assess compatibility.
* sunctx —the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Dense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

For backwards compatibility, we also provide the following wrapper function:

SUNLinearSolver SUNDenseLinearSolver (N_Vector'y, SUNMatrix A)
Wrapper function for SUNLinSol_Dense (), with identical input and output arguments
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8.4.2 SUNLinSol_Dense Description

The SUNLinSol_Dense module defines the confent field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;
};
These entries of the content field contain the following information:
* N - size of the linear system,
* pivots - index array for partial pivoting in LU factorization,
e last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

* The “setup” call performs an LU factorization with partial (row) pivoting (O(N?3) cost), PA = LU, where Pisa
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

* The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N?) cost).

The SUNLinSol_Dense module defines dense implementations of all “direct” linear solver operations listed in §8.1:
e SUNLinSolGetType_Dense

* SUNLinSolInitialize_Dense — this does nothing, since all consistency checks are performed at solver cre-
ation.

e SUNLinSolSetup_Dense — this performs the LU factorization.
* SUNLinSolSolve_Dense — this uses the LU factors and pivots array to perform the solve.
e SUNLinSolLastFlag_Dense

e SUNLinSolSpace_Dense — this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

e SUNLinSolFree_Dense

8.5 The SUNLinSol_KLU Module

The SUNLinSol_KLU implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_SPARSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).
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8.5.1 SUNLinSol_KLU Usage

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h. The installed module library
tolink tois 1ibsundials_sunlinsolklu./ib where .lib is typically . so for shared libraries and . a for static libraries.

The module SUNLinSol_KLU provides the following additional user-callable routines:
SUNLinearSolver SUNLinSol_KLU(N_Vector 'y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_KLU object.
Arguments:
* y — vector used to determine the linear system size.
* A — matrix used to assess compatibility.
* sunctx —the SUNContext object (see §4.2)

Return value:
New SUNLinSol KLU object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

int SUNLinSol_KLUReInit (SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)

This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic (and numeric factorization).

Arguments:
* § —existing SUNLinSol_KLU object to reinitialize.
e A — sparse SUNMatrix matrix (with updated structure) to use for reinitialization.
* nnz — maximum number of nonzeros expected for Jacobian matrix.
* reinit_type — governs the level of reinitialization. The allowed values are:

1. The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value
passed to this call. New symbolic and numeric factorizations will be completed at the next solver
setup.

2. Only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size
has not exceeded the size of nnz given in the sparse matrix provided to the original constructor
routine (or the previous SUNKLUReInit call).

Return value:
e SUNLS_SUCCESS — reinitialization successful.
e SUNLS_MEM_NULL - either S or A are NULL.

e SUNLS_ILL_INPUT - A does not have type SUNMATRIX_SPARSE or
reinit_type is invalid.

» SUNLS_MEM_FAIL reallocation of the sparse matrix failed.

Notes:
This routine assumes no other changes to solver use are necessary.
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int SUNLinSol_KLUSetOrdering (SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve.
Arguments:
* § —existing SUNLinSol_KLU object to update.
* ordering_choice — type of ordering to use, options are:
0. AMD,
1. COLAMD, and
2. the natural ordering.
The default is 1 for COLAMD.
Return value:
» SUNLS_SUCCESS - ordering choice successfully updated.
e SUNLS_MEM_NULL - S is NULL.
e SUNLS_ILL_INPUT - ordering_choice.

sun_klu_symbolic *SUNLinSol_KLUGetSymbolic (SUNLinearSolver S)

This function returns a pointer to the KLU symbolic factorization stored in the SUNLinSol_KLU content
structure.

When SUNDIALS is compiled with 32-bit indices (SUNDIALS_INDEX_SIZE=32), sun_klu_symbolic is
mapped to the KLU type klu_symbolic; when SUNDIALS compiled with 64-bit indices (SUNDIALS_IN-
DEX_SIZE=64) this is mapped to the KLU type klu_1_symbolic.

sun_klu_numeric *SUNLinSol_KLUGetNumeric(SUNLinearSolver S)
This function returns a pointer to the KLU numeric factorization stored in the SUNLinSol_KLU content struc-
ture.

When SUNDIALS is compiled with 32-bit indices (SUNDIALS_INDEX_SIZE=32), sun_klu_numeric is
mapped to the KLU type klu_numeric; when SUNDIALS is compiled with 64-bit indices (SUNDIALS_IN-
DEX_SIZE=64) this is mapped to the KLU type klu_1_numeric.

sun_klu_common *SUNLinSol_KLUGetCommon (SUNLinearSolver S)
This function returns a pointer to the KLU common structure stored in the SUNLinSol_KLU content structure.
When SUNDIALS is compiled with 32-bit indices (SUNDIALS_INDEX_SIZE=32), sun_klu_common is mapped

to the KLU type klu_common; when SUNDIALS is compiled with 64-bit indices (SUNDIALS_INDEX_SIZE=64)
this is mapped to the KLU type klu_1_common.

For backwards compatibility, we also provide the following wrapper functions, each with identical input and output
arguments to the routines that they wrap:

SUNLinearSolver SUNKLU(N_Vector 'y, SUNMatrix A)
Wrapper function for SUNLinSol_KLU()

int SUNKLUReInit (SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
Wrapper function for SUNLinSol_KLUReInit()

int SUNKLUSetOrdering (SUNLinearSolver S, int ordering_choice)
Wrapper function for SUNLinSol_KLUSetOrdering ()
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8.5.2 SUNLinSol_KLU Description

The SUNLinSol_KLU module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_ KLU {

int last_flag;

int first_factorize;

sun_klu_symbolic *symbolic;

sun_klu_numeric *numeric;

sun_klu_common common;

sunindextype (*klu_solver) (sun_klu_symbolic*, sun_klu_numeric*,
sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:
* last_flag - last error return flag from internal function evaluations,
e first_factorize - flag indicating whether the factorization has ever been performed,

* symbolic - KLU storage structure for symbolic factorization components, with underlying type klu_symbolic
or klu_1_symbolic, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respec-
tively,

e numeric - KLU storage structure for numeric factorization components, with underlying type klu_numeric or
klu_l1_numeric, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

* common - storage structure for common KLU solver components, with underlying type klu_common or klu_-
1_common, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

* klu_solver — pointer to the appropriate KLU solver function (depending on whether it is using a CSR or CSC
sparse matrix, and on whether SUNDIALS was installed with 32-bit or 64-bit indices).

The SUNLinSol_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and solver
library written by Tim Davis and collaborators ([3, 26]). In order to use the SUNLinSol_KLU interface to KLU, it is
assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with KLU (see §11.1.4 for details). Additionally, this wrapper only supports double-
precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have realtype set to either
extended or single (see Data Types for details). Since the KLU library supports both 32-bit and 64-bit integers, this
interface will be compiled for either of the available sunindextype options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to block
triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be factored)
to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these ordering
choices, the default value in the SUNLinSol_KLU module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that can
be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also returns
diagnostic information that a user can examine to determine if numerical stability is being lost and a full numerical
factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_KLU module is constructed to perform the following operations:

* The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.
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On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by estimates
of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these esti-
mates of the condition number are larger than g=2/3 (where ¢ is the double-precision unit roundoff), then a new
factorization is performed.

The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization at
the next “setup” call.

The “solve” call performs pivoting and forward and backward substitution using the stored KLU data structures.
We note that in this solve KLU operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.

The SUNLinSol_KLU module defines implementations of all “direct” linear solver operations listed in §8.1:

8.6

SUNLinSolGetType_KLU

SUNLinSolInitialize_KLU - this sets the first_factorize flag to 1, forcing both symbolic and numerical
factorizations on the subsequent “setup” call.

SUNLinSolSetup_KLU — this performs either a LU factorization or refactorization of the input matrix.

SUNLinSolSolve_KLU - this calls the appropriate KLU solve routine to utilize the LU factors to solve the linear
system.

SUNLinSolLastFlag_KLU

SUNLinSolSpace_KLU — this only returns information for the storage within the solver inferface, i.e. storage for
the integers last_flag and first_factorize. For additional space requirements, see the KLU documenta-
tion.

SUNLinSolFree_KLU

The SUNLinSol_LapackBand Module

The SUNLinSol_LapackBand implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS). The

8.6.1 SUNLIinSol_LapackBand Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h. The installed
module library to link to is 1ibsundials_sunlinsollapackband ./ib where .lib is typically . so for shared libraries
and . a for static libraries.

The module SUNLinSol_LapackBand provides the following user-callable routine:

SUNLinearSolver SUNLinSol_LapackBand (N_Vector y, SUNMatrix A, SUNContext sunctx)

This function creates and allocates memory for a LAPACK band SUNLinearSolver.
Arguments:

* y —vector used to determine the linear system size.

* A — matrix used to assess compatibility.

* sunctx —the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackBand object, or NULL if either A or y are incompatible.
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Notes:

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this

compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth

storage for the LU factorization.
For backwards compatibility, we also provide the following wrapper function:

SUNLinearSolver SUNLapackBand (N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_LapackBand (), with identical input and output arguments.

8.6.2 SUNLinSol_LapackBand Description

SUNLinSol_LapackBand module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;
s
These entries of the content field contain the following information:
* N - size of the linear system,

* pivots - index array for partial pivoting in LU factorization,

e last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackBand module is a SUNLinearSolver wrapper for the LAPACK band matrix factorization
and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether SUNDIALS was configured
to have realtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackBand module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §11.1.4 for details). We note that
since there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be
compiled when using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLinSol_LapackBand module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

* The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU, where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND object A, with pivoting information encoding

P stored in the pivots array.

* The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the

LU factors held in the SUNMATRIX_BAND object.

¢ A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower

bandwidth m1.

The SUNLinSol_LapackBand module defines band implementations of all “direct” linear solver operations listed in

§8.1:
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e SUNLinSolGetType_LapackBand

* SUNLinSolInitialize_LapackBand — this does nothing, since all consistency checks are performed at solver
creation.

e SUNLinSolSetup_LapackBand — this calls either DGBTRF or SGBTRF to perform the LU factorization.

e SUNLinSolSolve_LapackBand — this calls either DGBTRS or SGBTRS to use the LU factors and pivots array
to perform the solve.

e SUNLinSolLastFlag_LapackBand

e SUNLinSolSpace_LapackBand - this only returns information for the storage within the solver object, i.e. stor-
age for N, last_flag, and pivots.

e SUNLinSolFree_LapackBand

8.7 The SUNLIinSol_LapackDense Module

The SUNLinSol_LapackDense implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

8.7.1 SUNLinSol_LapackDense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h. The installed
module library to link to is libsundials_sunlinsollapackdense .lib where .lib is typically . so for shared libraries
and . a for static libraries.

The module SUNLinSol_LapackDense provides the following additional user-callable constructor routine:
SUNLinearSolver SUNLinSol_LapackDense (N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver.
Arguments:
* y — vector used to determine the linear system size.
* A — matrix used to assess compatibility.
* sunctx —the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackDense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

For backwards compatibility, we also provide the following wrapper function:

SUNLinearSolver SUNLapackDense (N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_LapackDense (), with identical input and output arguments.
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8.7.2 SUNLinSol_LapackDense Description

The SUNLinSol_LapackDense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,
pivots - index array for partial pivoting in LU factorization,

last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackDense module is a SUNLinearSolver wrapper for the LAPACK dense matrix factorization
and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether SUNDIALS was configured
to have realtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackDense module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §11.1.4 for details). We note that
since there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be
compiled when using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLinSol_LapackDense module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

The “setup” call performs an LU factorization with partial (row) pivoting (O(N 3) cost), PA = LU, where Pisa
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N?) cost).

The SUNLinSol_LapackDense module defines dense implementations of all “direct” linear solver operations listed in

§8.1:
¢ SUNLinSolGetType_LapackDense
* SUNLinSolInitialize_LapackDense —this does nothing, since all consistency checks are performed at solver
creation.
e SUNLinSolSetup_LapackDense — this calls either DGETRF or SGETRF to perform the LU factorization.
* SUNLinSolSolve_LapackDense — this calls either DGETRS or SGETRS to use the LU factors and pivots array
to perform the solve.
e SUNLinSolLastFlag_LapackDense
e SUNLinSolSpace_LapackDense — this only returns information for the storage within the solver object, i.e.
storage for N, last_flag, and pivots.
e SUNLinSolFree_LapackDense
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8.8 The SUNLinSol_MagmaDense Module

The SUNLinearSolver_MagmaDense implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_MAGMADENSE matrix, and a GPU-enabled vector. The header file to include when us-
ing this module is sunlinsol/sunlinsol_magmadense.h. The installed library to link to is libsundials_-
sunlinsolmagmadense.lib where 1ib is typically . so for shared libraries and . a for static libraries.

Warning: The SUNLinearSolver_MagmaDense module is experimental and subject to change.

8.8.1 SUNLinearSolver_MagmaDense Description

The SUNLinearSolver_MagmaDense implementation provides an interface to the dense LU and dense batched LU
methods in the MAGMA linear algebra library [56]. The batched LU methods are leveraged when solving block
diagonal linear systems of the form

Ay O 0
0 A; 0

. . I’] = bj.
0 0 A,

8.8.2 SUNLinearSolver_MagmaDense Functions
The SUNLinearSolver_MagmaDense module defines implementations of all “direct” linear solver operations listed in
§8.1:
e SUNLinSolGetType_MagmaDense
e SUNLinSolInitialize_MagmaDense
e SUNLinSolSetup_MagmaDense
e SUNLinSolSolve_MagmaDense
e SUNLinSolLastFlag_MagmaDense
e SUNLinSolFree_MagmaDense
In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_MagmaDense (N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:
* y—a vector for checking compatibility with the solver.
* A —a SUNMATRIX_MAGMADENSE matrix for checking compatibility with the solver.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.
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int SUNLinSol_MagmaDense_SetAsync (SUNLinearSolver LS, booleantype onoft)

This function can be used to toggle the linear solver between asynchronous and synchronous modes. In asyn-
chronous mode (default), SUNLinearSolver operations are asynchronous with respect to the host. In synchronous
mode, the host and GPU device are synchronized prior to the operation returning.

Arguments:

e LS —a SUNLinSol_MagmabDense object

¢ onoff — 0 for synchronous mode or 1 for asynchronous mode (default 1)
Return value:

* SUNLS_SUCCESS if successful

e SUNLS_MEM_NULL if LS is NULL

8.8.3 SUNLinearSolver_MagmaDense Content

The SUNLinearSolver_MagmaDense module defines the object content field of a SUNLinearSolver to be the follow-
ing structure:

struct _SUNLinearSolverContent_MagmaDense {

int last_flag;
booleantype async;
sunindextype N;
SUNMemory pivots;
SUNMemory pivotsarr;
SUNMemory dpivotsarr;
SUNMemory infoarr;
SUNMemory rhsarr;

SUNMemoryHelper memhelp;
magma_queue_t  q;

8.9 The SUNLinSol _OneMKkIDense Module

The SUNLinearSolver_OneMkIDense implementation of the SUNLinearSolver class interfaces to the direct linear
solvers from the Intel oneAPI Math Kernel Library (oneMKL) for solving dense systems or block-diagonal systems
with dense blocks. This linear solver is best paired with the SUNMatrix_OneMklDense matrix.

The header file to include when using this class is sunlinsol/sunlinsol_onemkldense.h. The installed library
to link to is 1ibsundials_sunlinsolonemkldense.lib where 1ib is typically .so for shared libraries and . a for
static libraries.

Warning: The SUNLinearSolver_OneMklIDense class is experimental and subject to change.
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8.9.1 SUNLinearSolver_OneMKkIDense Functions
The SUNLinearSolver_OneMklIDense class defines implementations of all “direct” linear solver operations listed in
§8.1:
e SUNLinSolGetType_OneMklDense — returns SUNLINEARSOLVER_ONEMKLDENSE
e SUNLinSolInitialize_OneMklDense
e SUNLinSolSetup_OneMklDense
e SUNLinSolSolve_OneMklDense
e SUNLinSolLastFlag_OneMklDense
* SUNLinSolFree_OneMklDense
In addition, the class provides the following user-callable routines:

SUNLinearSolver SUNLinSol_OneMklDense (N_Vector y, SUNMatrix A, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNLinearSolver object.
Arguments:
* y —a vector for checking compatibility with the solver.
* A —a SUNMatrix_OneMklDense matrix for checking compatibility with the solver.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.

8.9.2 SUNLinearSolver_OneMKklDense Usage Notes

Warning: The SUNLinearSolver_OneMklIDense class only supports 64-bit indexing, thus SUNDIALS must be
built for 64-bit indexing to use this class.

When using the SUNLinearSolver_OneMklDense class with a SUNDIALS package (e.g. CVODE), the queue
given to the matrix is also used for the linear solver.

8.10 The SUNLIinSol PCG Module

The SUNLinSol_PCG implementation of the SUNLinearSolver class performs the PCG (Preconditioned Conjugate
Gradient [36]) method; this is an iterative linear solver that is designed to be compatible with any N_Vector implemen-
tation that supports a minimal subset of operations (N_VCIlone (), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of
memory that does not increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric linear
systems (e.g. mass matrix linear systems encountered in ARKODE). As a result, the explanation of the role of scaling
and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves a linear
system Az = b where A is a symmetric (A7 = A), real-valued matrix. Preconditioning is allowed, and is applied in
a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We denote the
preconditioner and scaling matrices as follows:
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P is the preconditioner (assumed symmetric),
* Sis a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P~" as operators are required. The
diagonal of the matrix S is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system
Az =b (8.4)

where

b=SP b, (8.5)

The scaling matrix must be chosen so that the vectors SP~1'b and S~! Px have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

Ib— Az < 6
ISP~ — SP Az, < §

|P~1b— Pt Az||s < 6

where ||v||s = VvT ST Sv, with an input tolerance 4.

8.10.1 SUNLinSol_PCG Usage

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h. The SUNLinSol_PCG
module is accessible from all SUNDIALS solvers without linking to the 1ibsundials_sunlinsolpcg module library.

The module SUNLinSol_PCG provides the following user-callable routines:
SUNLinearSolver SUNLinSol_PCG(N_Vector y, int pretype, int maxl, SUNContext sunctx)

This constructor function creates and allocates memory for a PCG SUNLinearSolver.
Arguments:
* y —atemplate vector.

* pretype — a flag indicating the type of preconditioning to use:

SUN_PREC_NONE

SUN_PREC_LEFT
SUN_PREC_RIGHT

SUN_PREC_BOTH

¢ maxl — the maximum number of linear iterations to allow.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.
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Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A max1 argument that is < 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pre-
type inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of the symmetric
preconditioner; any other integer input will result in the default (no preconditioning). Although some SUN-
DIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only
right preconditioning (KINSOL), PCG should only be used with these packages when the linear systems
are known to be symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric
matrix, symmetric preconditioning should work appropriately even for packages designed with one-sided
preconditioning in mind.
int SUNLinSol_PCGSetPrecType (SUNLinearSolver S, int pretype)

This function updates the flag indicating use of preconditioning.
Arguments:

¢ §— SUNLinSol_PCG object to update.

* pretype — a flag indicating the type of preconditioning to use:
SUN_PREC_NONE

SUN_PREC_LEFT

SUN_PREC_RIGHT

SUN_PREC_BOTH

Return value:
e SUNLS_SUCCESS — successful update.
e SUNLS_ILL_INPUT —illegal pretype
¢ SUNLS_MEM_NULL - S is NULL

Notes:
As above, any one of the input values, SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will enable
preconditioning; SUN_PREC_NONE disables preconditioning.

int SUNLinSol_PCGSetMaxl (SUNLinearSolver S, int maxl)

This function updates the number of linear solver iterations to allow.
Arguments:
* §— SUNLinSol_PCG object to update.

* maxl — maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:
» SUNLS_SUCCESS - successful update.
e SUNLS_MEM_NULL - S is NULL
int SUNLinSolSetInfoFile_PCG(SUNLinearSolver LS, FILE *info_file)

The function SUNLinSolSetInfoFile_PCG() sets the output file where all informative (non-error) messages
should be directed.

Arguments:

8.10. The SUNLinSol_PCG Module 351



User Documentation for IDAS, v5.5.1

* LS —a SUNLinSol object

* info_file — pointer to output file (stdout by default);
a NULL input will disable output

Return value:
e SUNLS_SUCCESS if successful
* SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL
e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the file pointer
is set to stdout.

Warning: SUNDIALS must be built with the CMake option SUNDIALS_LOGGING_LEVEL >= 3 to utilize
this function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

int SUNLinSolSetPrintLevel PCG(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel _PCG() specifies the level of verbosity of the output.

Arguments:
e LS —a SUNLinSol object
* print_level — flag indicating level of verbosity; must be one of:
— 0, no information is printed (default)
— 1, for each linear iteration the residual norm is printed
Return value:
e SUNLS_SUCCESS if successful
e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the print level
is 0.

SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_MONITORING to utilize this
function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

For backwards compatibility, we also provide the following wrapper functions, each with identical input and output
arguments to the routines that they wrap:

SUNLinearSolver SUNPCG(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_PCG()

int SUNPCGSetPrecType (SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_PCGSetPrecType ()
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int SUNPCGSetMax1 (SUNLinearSolver S, int maxl)

Wrapper function for SUNLinSol_PCGSetMax1 ()

8.10.2 SUNLinSol_PCG Description

The SUNLinSol_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
booleantype zeroguess;
int numiters;
realtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;

N_Vector p;

N_Vector z;

N_Vector Ap;

int print_level;
FILE* info_file;

e

These entries of the confent field contain the following information:

max1 - number of PCG iterations to allow (default is 5),
pretype - flag for use of preconditioning (default is none),
numiters - number of iterations from the most-recent solve,
resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,
ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,
Psolve - function pointer to preconditioner solve routine,
PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a N_Vector which holds the preconditioned linear system residual,

P, z, Ap-N_Vector used for workspace by the PCG algorithm.

print_level - controls the amount of information to be printed to the info file

info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

8.10.

The SUNLinSol_PCG Module

353



User Documentation for IDAS, v5.5.1

* During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

» User-facing “set” routines may be called to modify default solver parameters.

¢ Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

* In the “initialize” call, the solver parameters are checked for validity.

* In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

¢ In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those options
have been supplied.

The SUNLinSol_PCG module defines implementations of all “iterative” linear solver operations listed in §8.1:
e SUNLinSolGetType_PCG
e SUNLinSolInitialize_PCG
* SUNLinSolSetATimes_PCG
e SUNLinSolSetPreconditioner_PCG

e SUNLinSolSetScalingVectors_PCG — since PCG only supports symmetric scaling, the second N_Vector
argument to this function is ignored.

* SUNLinSolSetZeroGuess_PCG — note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_PCG().

e SUNLinSolSetup_PCG

e SUNLinSolSolve_PCG

e SUNLinSolNumIters_PCG
* SUNLinSolResNorm_PCG
e SUNLinSolResid_PCG

e SUNLinSolLastFlag_PCG
e SUNLinSolSpace_PCG

e SUNLinSolFree_PCG

8.11 The SUNLinSol SPBCGS Module

The SUNLinSol_SPBCGS implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [59] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VCIlone (), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, SP-
BCGS requires a fixed amount of memory that does not increase with the number of allowed iterations.

354 Chapter 8. Linear Algebraic Solvers



User Documentation for IDAS, v5.5.1

8.11.1 SUNLinSol_SPBCGS Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h. The SUNLinSol_-
SPBCGS module is accessible from all SUNDIALS solvers without linking to the 1ibsundials_sunlinsolspbcgs
module library.

The module SUNLinSol_SPBCGS provides the following user-callable routines:
SUNLinearSolver SUNLinSol_SPBCGS (N_Vector y, int pretype, int maxl, SUNContext sunctx)

This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver.
Arguments:

* y—atemplate vector.

* pretype — a flag indicating the type of preconditioning to use:

SUN_PREC_NONE

SUN_PREC_LEFT

SUN_PREC_RIGHT

SUN_PREC_BOTH
¢ maxl — the maximum number of linear iterations to allow.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is < 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPBCGS object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Note: With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess () to indicate the initial guess is zero).

int SUNLinSol_SPBCGSSetPrecType (SUNLinearSolver S, int pretype)

This function updates the flag indicating use of preconditioning.
Arguments:

* §—SUNLinSol_SPBCGS object to update.

* pretype — a flag indicating the type of preconditioning to use:

SUN_PREC_NONE

SUN_PREC_LEFT

SUN_PREC_RIGHT

SUN_PREC_BOTH

Return value:
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e SUNLS_SUCCESS — successful update.
« SUNLS_ILL_INPUT — illegal pretype
e SUNLS_MEM_NULL - S is NULL
int SUNLinSol_SPBCGSSetMaxl (SUNLinearSolver S, int maxl)

This function updates the number of linear solver iterations to allow.
Arguments:
¢ §— SUNLinSol_SPBCGS object to update.

* max! — maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:
e SUNLS_SUCCESS - successful update.
e SUNLS_MEM_NULL - S is NULL

int SUNLinSolSetInfoFile_SPBCGS (SUNLinearSolver LS, FILE *info_file)

The function SUNLinSolSetInfoFile_SPBCGS() sets the output file where all informative (non-error) mes-
sages should be directed.

Arguments:
e LS — a SUNLinSol object

* info_file — pointer to output file (stdout by default);
a NULL input will disable output

Return value:
* SUNLS_SUCCESS if successful
* SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL
e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the file pointer
is set to stdout.

SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_MONITORING to utilize this
function. See $11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

int SUNLinSolSetPrintLevel_SPBCGS (SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPBCGS () specifies the level of verbosity of the output.

Arguments:
e LS —a SUNLinSol object
* print_level — flag indicating level of verbosity; must be one of:
— 0, no information is printed (default)
— 1, for each linear iteration the residual norm is printed
Return value:
* SUNLS_SUCCESS if successful
* SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL
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e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the print level
is 0.

Warning: SUNDIALS must be built with the CMake option SUNDIALS_LOGGING_LEVEL >= 3 to utilize
this function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

For backwards compatibility, we also provide the following wrapper functions, each with identical input and output
arguments to the routines that they wrap:

SUNLinearSolver SUNSPBCGS (N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPBCGS ()

int SUNSPBCGSSetPrecType (SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPBCGSSetPrecType ()

int SUNSPBCGSSetMax1 (SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_SPBCGSSetMax1 ()

8.11.2 SUNLinSol_SPBCGS Description

The SUNLinSol_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
booleantype zeroguess;
int numiters;
realtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector sl1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;
int print_level;
FILE* info_file;
};

These entries of the content field contain the following information:
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max] - number of SPBCGS iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

sl, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a N_Vector which holds the current scaled, preconditioned linear system residual,
r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,
P, 4, u, Ap, vtemp - N_Vector used for workspace by the SPBCGS algorithm.
print_level - controls the amount of information to be printed to the info file

info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPBCGS to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the solver parameters are checked for validity.

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPBCGS module defines implementations of all “iterative” linear solver operations listed in §8.1:

SUNLinSolGetType_SPBCGS
SUNLinSolInitialize_SPBCGS
SUNLinSolSetATimes_SPBCGS
SUNLinSolSetPreconditioner_SPBCGS
SUNLinSolSetScalingVectors_SPBCGS

SUNLinSolSetZeroGuess_SPBCGS — note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPBCGS().

SUNLinSolSetup_SPBCGS
SUNLinSolSolve_SPBCGS
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e SUNLinSolNumIters_SPBCGS
e SUNLinSolResNorm_SPBCGS
* SUNLinSolResid_SPBCGS

e SUNLinSolLastFlag_SPBCGS
e SUNLinSolSpace_SPBCGS

* SUNLinSolFree_SPBCGS

8.12 The SUNLinSol_SPFGMR Module

The SUNLinSol_SPFGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [54] method; this is an iterative linear solver that is designed to be compatible
with any N_Vector implementation that supports a minimal subset of operations (N_VClone (), N_VDotProd(), N_-
VScale(), N_VLinearSum(), N_VProd(), N_VConst (), N_VDiv(), and N_VDestroy()). Unlike the other Krylov
iterative linear solvers supplied with SUNDIALS, FGMRES is specifically designed to work with a changing precon-
ditioner (e.g. from an iterative method).

8.12.1 SUNLinSol_SPFGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h. The SUNLinSol_-
SPFGMR module is accessible from all SUNDIALS solvers without linking to the 1ibsundials_sunlinsolspfgmr
module library.

The module SUNLinSol_SPFGMR provides the following user-callable routines:
SUNLinearSolver SUNLinSol_SPFGMR (N _Vector vy, int pretype, int maxl, SUNContext sunctx)

This constructor function creates and allocates memory for a SPEFGMR SUNLinearSolver.
Arguments:

* y —atemplate vector.

* pretype — a flag indicating the type of preconditioning to use:

SUN_PREC_NONE

SUN_PREC_LEFT

SUN_PREC_RIGHT

— SUN_PREC_BOTH
* maxl — the number of Krylov basis vectors to use.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A max] argument that is < 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
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any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS). While it is possible to use a
right-preconditioned SUNLinSol_SPFGMR object for these packages, this use mode is not supported and
may result in inferior performance.

int SUNLinSol_SPFGMRSetPrecType (SUNLinearSolver S, int pretype)

This function updates the flag indicating use of preconditioning.
Arguments:
* §— SUNLinSol_SPFGMR object to update.
* pretype — a flag indicating the type of preconditioning to use:
— SUN_PREC_NONE
— SUN_PREC_LEFT
— SUN_PREC_RIGHT
— SUN_PREC_BOTH
Return value:
e SUNLS_SUCCESS - successful update.
 SUNLS_ILL_INPUT - illegal pretype
e SUNLS_MEM_NULL - S is NULL

Notes:
Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning).

int SUNLinSol_SPFGMRSetGSType (SUNLinearSolver S, int gstype)

This function sets the type of Gram-Schmidt orthogonalization to use.
Arguments:
* §— SUNLinSol_SPFGMR object to update.
* gstype — a flag indicating the type of orthogonalization to use:
— SUN_MODIFIED_GS
— SUN_CLASSICAL_GS
Return value:
* SUNLS_SUCCESS — successful update.
* SUNLS_ILL_INPUT - illegal gstype
e SUNLS_MEM_NULL - S is NULL
int SUNLinSol_SPFGMRSetMaxRestarts (SUNLinearSolver S, int maxrs)

This function sets the number of FGMRES restarts to allow.
Arguments:

* §— SUNLinSol_SPFGMR object to update.

* maxrs — maximum number of restarts to allow. A negative input will result in the default of 0.
Return value:

» SUNLS_SUCCESS - successful update.
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e SUNLS_MEM_NULL - S is NULL

int SUNLinSolSetInfoFile_SPFGMR (SUNLinearSolver LS, FILE *info_file)

The function SUNLinSolSetInfoFile_SPFGMR() sets the output file where all informative (non-error) mes-
sages should be directed.

Arguments:
e LS —a SUNLinSol object

* info_file — pointer to output file (stdout by default);
a NULL input will disable output

Return value:
e SUNLS_SUCCESS if successful
e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL
e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the file pointer
is set to stdout.

Warning: SUNDIALS must be built with the CMake option SUNDIALS_LOGGING_LEVEL >= 3 to utilize
this function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

int SUNLinSolSetPrintLevel _SPFGMR(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPFGHMR() specifies the level of verbosity of the output.

Arguments:
* LS —a SUNLinSol object
e print_level — flag indicating level of verbosity; must be one of:
— 0, no information is printed (default)
— 1, for each linear iteration the residual norm is printed
Return value:
* SUNLS_SUCCESS if successful
e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes:

This function is intended for users that wish to monitor the linear solver progress. By default, the print level
is 0.

SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_MONITORING to utilize this
function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

For backwards compatibility, we also provide the following wrapper functions, each with identical input and output
arguments to the routines that they wrap:
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SUNLinearSolver SUNSPFGMR (N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPFGMR()

int SUNSPFGMRSetPrecType (SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPFGMRSetPrecType ()

int SUNSPFGMRSetGSType (SUNLinearSolver S, int gstype)
Wrapper function for SUNLinSol_SPFGMRSetGSType ()

int SUNSPFGMRSetMaxRestarts (SUNLinearSolver S, int maxrs)
Wrapper function for SUNLinSol_SPFGMRSetMaxRestarts()

8.12.2 SUNLinSol_SPFGMR Description

The SUNLinSol_SPFGMR module defines the confent field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
booleantype zeroguess;
int numiters;
realtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;

N_Vector s2;
N_Vector *V;
N_Vector *Z;
realtype **Hes;

realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;
int print_level;
FILE* info_file;
3
These entries of the content field contain the following information:
¢ maxl - number of FGMRES basis vectors to use (default is 5),
* pretype - flag for use of preconditioning (default is none),
e gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),
e max_restarts - number of FGMRES restarts to allow (default is 0),

e numiters - number of iterations from the most-recent solve,

e resnorm - final linear residual norm from the most-recent solve,
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last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

sl, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors vy, ..., Umaxi+1, stored in V[0], ..., V[maxl]. Each v; is a vector of
type N_Vector,

Z - the array of preconditioned Krylov basis vectors 21, . . ., Zmaxi+1, stored in Z[0], ..., Z[maxl]. Each z;
is a vector of type N_Vector,

Hes - the (maxl + 1) x maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
rithm. These matrices are Iy, F, ..., I, where

1

C; —S;
Si &

1

co, givens[1] = sg, givens[2] = c1, givens[3]

are represented in the givens vector as givens[0]
= 51,...,0ivens[2j] = c;, givens[2j+1] = s;,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (max1 + 1) array of realtype values used to hold “short” vectors (e.g. y and g),
vtemp - temporary vector storage.

print_level - controls the amount of information to be printed to the info file

info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).
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¢ In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPFGMR module defines implementations of all “iterative” linear solver operations listed in §8.1:
e SUNLinSolGetType_SPFGMR
e SUNLinSolInitialize_SPFGMR
* SUNLinSolSetATimes_SPFGMR
* SUNLinSolSetPreconditioner_SPFGMR
e SUNLinSolSetScalingVectors_SPFGMR

e SUNLinSolSetZeroGuess_SPFGMR — note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPFGMR().

e SUNLinSolSetup_SPFGMR

e SUNLinSolSolve_SPFGMR

e SUNLinSolNumIters_SPFGMR
* SUNLinSolResNorm_SPFGMR
* SUNLinSolResid_SPFGMR

e SUNLinSolLastFlag_SPFGMR
e SUNLinSolSpace_SPFGMR

e SUNLinSolFree_SPFGMR

8.13 The SUNLinSol_ SPGMR Module

The SUNLinSol_SPGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Gen-
eralized Minimum Residual [55] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VCIlone (), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VConst (), N_VDiv(), and N_VDestroy()).

8.13.1 SUNLinSol_SPGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h. The SUNinSol_SPGMR
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspgmr module
library.

The module SUNLinSol_SPGMR provides the following user-callable routines:
SUNLinearSolver SUNLinSol_SPGMR (N_Vector y, int pretype, int maxl, SUNContext sunctx)

This constructor function creates and allocates memory for a SPGMR SUNLinearSolver.
Arguments:
e y —atemplate vector.
* pretype — a flag indicating the type of preconditioning to use:
— SUN_PREC_NONE
— SUN_PREC_LEFT
— SUN_PREC_RIGHT
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— SUN_PREC_BOTH
* maxl — the number of Krylov basis vectors to use.

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A max1 argument that is < 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPGMR object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

int SUNLinSol_SPGMRSetPrecType (SUNLinearSolver S, int pretype)

This function updates the flag indicating use of preconditioning.
Arguments:

* §— SUNLinSol_SPGMR object to update.

* pretype — a flag indicating the type of preconditioning to use:

SUN_PREC_NONE

SUN_PREC_LEFT

SUN_PREC_RIGHT

SUN_PREC_BOTH
Return value:
* SUNLS_SUCCESS — successful update.
* SUNLS_ILL_INPUT — illegal pretype
e SUNLS_MEM_NULL - S is NULL
int SUNLinSol_SPGMRSetGSType (SUNLinearSolver S, int gstype)

This function sets the type of Gram-Schmidt orthogonalization to use.
Arguments:
* §— SUNLinSol_SPGMR object to update.
* gstype — a flag indicating the type of orthogonalization to use:
— SUN_MODIFIED_GS
— SUN_CLASSICAL_GS
Return value:
» SUNLS_SUCCESS - successful update.
e SUNLS_ILL_INPUT —illegal gstype
e SUNLS_MEM_NULL - S is NULL

int SUNLinSol_SPGMRSetMaxRestarts (SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow.

Arguments:
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* §— SUNLinSol_SPGMR object to update.

* maxrs — maximum number of restarts to allow. A negative input will result in the default of 0.
Return value:

e SUNLS_SUCCESS — successful update.

e SUNLS_MEM_NULL - S is NULL

int SUNLinSolSetInfoFile_SPGMR (SUNLinearSolver LS, FILE *info_file)

The function SUNLinSolSetInfoFile_SPGMR() sets the output file where all informative (non-error) messages
should be directed.

Arguments:

e LS — a SUNLinSol object

* info_file — pointer to output file (stdout by default); a NULL input will disable output
Return value:

e SUNLS_SUCCESS if successful

e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the file pointer
is set to stdout.

Warning: SUNDIALS must be built with the CMake option SUNDIALS_LOGGING_LEVEL >= 3 to utilize
this function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

int SUNLinSolSetPrintLevel _SPGMR(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPGMR() specifies the level of verbosity of the output.

Arguments:
e LS — a SUNLinSol object
* print_level — flag indicating level of verbosity; must be one of:
— 0, no information is printed (default)
— 1, for each linear iteration the residual norm is printed
Return value:
e SUNLS_SUCCESS if successful
e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the print level
is 0.

SUNDIALS must be built with the CMake option SUNDTALS_BUILD_WITH_MONITORING to utilize this
function. See §11.1.2 for more information.

366 Chapter 8. Linear Algebraic Solvers



User Documentation for IDAS, v5.5.1

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments to
the routines that they wrap:

SUNLinearSolver SUNSPGMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPGMR()

int SUNSPGMRSetPrecType (SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPGMRSetPrecType()

int SUNSPGMRSetGSType (SUNLinearSolver S, int gstype)
Wrapper function for SUNLinSol_SPGMRSetGSType ()

int SUNSPGMRSetMaxRestarts (SUNLinearSolver S, int maxrs)
Wrapper function for SUNLinSol_SPGMRSetMaxRestarts()

8.13.2 SUNLinSol_SPGMR Description

The SUNLinSol_SPGMR module defines the confent field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
booleantype zeroguess;
int numiters;
realtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
realtype “*Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;
int print_level;
FILE* info_file;
};

These entries of the content field contain the following information:
e maxl - number of GMRES basis vectors to use (default is 5),
* pretype - flag for type of preconditioning to employ (default is none),
* gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

e max_restarts - number of GMRES restarts to allow (default is 0),
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numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1l, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors vy, . .., Umax+1, stored in V[0], ... V[maxl]. Each v; is a vector of type
N_Vector,

Hes - the (maxl + 1) x maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

givens - alength 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algorithm.
These matrices are Fy, I, ..., I, where

1

C; —S;
Sg &

1

are represented in the givens vector as givens[0] = cg, givens[1] = sg, givens[2] = c¢;, givens[3]
= 51,...,givens[2]] = ¢;, givens[2j+1] = s;,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (max1 + 1) array of realtype values used to hold “short” vectors (e.g. y and g),
vtemp - temporary vector storage.

print_level - controls the amount of information to be printed to the info file

info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPGMR to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).
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¢ In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts if
those options have been supplied.

The SUNLinSol_SPGMR module defines implementations of all “iterative” linear solver operations listed in §8.1:
e SUNLinSolGetType_SPGMR
e SUNLinSolInitialize_SPGMR
* SUNLinSolSetATimes_SPGMR
* SUNLinSolSetPreconditioner_SPGMR
e SUNLinSolSetScalingVectors_SPGMR

* SUNLinSolSetZeroGuess_SPGMR — note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_SPGMRQ).

e SUNLinSolSetup_SPGMR

e SUNLinSolSolve_SPGMR

e SUNLinSolNumIters_SPGMR
e SUNLinSolResNorm_SPGMR
e SUNLinSolResid_SPGMR

e SUNLinSolLastFlag_SPGMR
e SUNLinSolSpace_SPGMR

* SUNLinSolFree_SPGMR

8.14 The SUNLinSol_SPTFQMR Module

The SUNLinSol_SPTFQMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [34] method; this is an iterative linear solver that is designed to be compat-
ible with any N_Vector implementation that supports a minimal subset of operations (N_VClone (), N_VDotProd(),
N_VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR
and SPFGMR algorithms, SPTFQMR requires a fixed amount of memory that does not increase with the number of
allowed iterations.

8.14.1 SUNLinSol_SPTFQMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_sptfqmr.h. The SUNLinSol_SPT-
FQMR module is accessible from all SUNDIALS solvers without linking to the 1ibsundials_sunlinsolsptfgmr
module library.

The module SUNLinSol_SPTFQMR provides the following user-callable routines:
SUNLinearSolver SUNLinSol_SPTFQMR (N_Vector y, int pretype, int maxl, SUNContext sunctx)

This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver.
Arguments:

e y —atemplate vector.

* pretype — a flag indicating the type of preconditioning to use:

— SUN_PREC_NONE
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— SUN_PREC_LEFT

— SUN_PREC_RIGHT

— SUN_PREC_BOTH
* maxl — the number of Krylov basis vectors to use.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A max] argument that is < 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPTFQMR
object to use any of the preconditioning options with these solvers, this use mode is not supported and may
result in inferior performance.

Note: With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess () to indicate the initial guess is zero).

int SUNLinSol_SPTFQMRSetPrecType (SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:
* S — SUNLinSol_SPGMR object to update.
* pretype — a flag indicating the type of preconditioning to use:

SUN_PREC_NONE

SUN_PREC_LEFT

SUN_PREC_RIGHT
SUN_PREC_BOTH

Return value:
e SUNLS_SUCCESS — successful update.
e SUNLS_ILL_INPUT —illegal pretype
¢ SUNLS_MEM_NULL - S is NULL

int SUNLinSol_SPTFQMRSetMaxl (SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:
¢ §— SUNLinSol_SPTFQMR object to update.

* maxl —maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

* SUNLS_SUCCESS — successful update.

370 Chapter 8. Linear Algebraic Solvers



User Documentation for IDAS, v5.5.1

e SUNLS_MEM_NULL - S is NULL

int SUNLinSolSetInfoFile_SPTFQMR (SUNLinearSolver LS, FILE *info_file)

The function SUNLinSolSetInfoFile_SPTFQMR() sets the output file where all informative (non-error) mes-
sages should be directed.

Arguments:
e LS —a SUNLinSol object

* info_file — pointer to output file (stdout by default);
a NULL input will disable output

Return value:
e SUNLS_SUCCESS if successful
e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL
e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes:
This function is intended for users that wish to monitor the linear solver progress. By default, the file pointer
is set to stdout.

Warning: SUNDIALS must be built with the CMake option SUNDIALS_LOGGING_LEVEL >= 3 to utilize
this function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

int SUNLinSolSetPrintLevel SPTFQMR(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel _SPTFQMR() specifies the level of verbosity of the output.

Arguments:
* LS —a SUNLinSol object
e print_level — flag indicating level of verbosity; must be one of:
— 0, no information is printed (default)
— 1, for each linear iteration the residual norm is printed
Return value:
* SUNLS_SUCCESS if successful
e SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

e SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes:

This function is intended for users that wish to monitor the linear solver progress. By default, the print level
is 0.

SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_MONITORING to utilize this
function. See §11.1.2 for more information.

Deprecated since version 6.2.0: Use SUNLogger_SetInfoFilename () instead.

For backwards compatibility, we also provide the following wrapper functions, each with identical input and output
arguments to the routines that they wrap:
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SUNLinearSolver SUNSPTFQMR (N_Vector y, int pretype, int maxl)

Wrapper function for SUNLinSol_SPTFQMR()

int SUNSPTFQMRSetPrecType (SUNLinearSolver S, int pretype)

Wrapper function for SUNLinSol_SPTFQMRSetPrecType ()

int SUNSPTFQMRSetMax1 (SUNLinearSolver S, int maxl)

Wrapper function for SUNLinSol_SPTFQMRSetMax1 ()

8.14.2 SUNLinSol_SPTFQMR Description

The SUNLinSol_SPTFQMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
booleantype zeroguess;
int numiters;
realtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtempl;
N_Vector vtemp2;
N_Vector vtemp3;
int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:

max] - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),
numiters - number of iterations from the most-recent solve,
resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,
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Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1l, s2 - vector pointers for supplied scaling matrices (default is NULL),

r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,
q, d, v, p, u-N_Vector used for workspace by the SPTFQMR algorithm,

r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

vtempl, vtemp2, vtemp3 - temporary vector storage.

print_level - controls the amount of information to be printed to the info file

info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the solver parameters are checked for validity.

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in §8.1:

SUNLinSolGetType_SPTFQMR
SUNLinSolInitialize_SPTFQMR
SUNLinSolSetATimes_SPTFQMR
SUNLinSolSetPreconditioner_SPTFQMR
SUNLinSolSetScalingVectors_SPTFQMR

SUNLinSolSetZeroGuess_SPTFQMR — note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPTFQMRQ).

SUNLinSolSetup_SPTFQMR
SUNLinSolSolve_SPTFQMR
SUNLinSolNumIters_SPTFQMR
SUNLinSolResNorm_SPTFQMR
SUNLinSolResid_SPTFQMR
SUNLinSolLastFlag_SPTFQMR
SUNLinSolSpace_SPTFQMR
SUNLinSolFree_SPTFQMR
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8.15 The SUNLinSol_SuperLUDIST Module

The SUNLinsol_SuperLUDIST implementation of the SUNLinearSolver class interfaces with the SuperLU_DIST
library. This is designed to be used with the SUNMatrix_SLUNRIloc SUNMatrix, and one of the serial, threaded or
parallel N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVEC-
TOR_PARALLEL, NVECTOR_PARHYP).

8.15.1 SUNLinSol_SuperLUDIST Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superludist.h. The installed
module library to link to is 1ibsundials_sunlinsolsuperludist./ib where.lib is typically . so for shared libraries
and . a for static libraries.

The module SUNLinSol_SuperLUDIST provides the following user-callable routines:

Warning: Starting with SuperLU_DIST version 6.3.0, some structures were renamed to have a prefix for the
floating point type. The double precision API functions have the prefix ‘d’. To maintain backwards compatibility
with the unprefixed types, SUNDIALS provides macros to these SuperLU_DIST types with an ‘x’ prefix that expand
to the correct prefix. E.g., the SUNDIALS macro xLUstruct_t expands to dLUstruct_t or LUstruct_t based
on the SuperLU_DIST version.

SUNLinearSolver SUNLinSol_SuperLUDIST (N_Vector y, SuperMatrix *A, gridinfo_t *grid, xLUstruct_t *1u,

xScalePermstruct_t *scaleperm, xSOLVEstruct_t *solve,
SuperLUStat_t *stat, superlu_dist_options_t *options, SUNContext
sunctx)

This constructor function creates and allocates memory for a SUNLinSol_SuperLUDIST object.

Arguments:

* y —atemplate vector.
* A —atemplate matrix
e grid, lu, scaleperm, solve, stat, options — SuperLU_DIST object pointers.

* sunctx —the SUNContext object (see §4.2)

Return value:

If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:

This routine analyzes the input matrix and vector to determine the linear system size and to assess the
compatibility with the SuperLU_DIST library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMatrix_SLUNRIoc matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVECTOR_PARALLEL, and
NVECTOR_PARHYP vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are passed directly to
SuperLU_DIST routines.

Some struct members of the options argument are modified internally by the SUNLinSol_SuperLUDIST
solver. Specifically, the member Fact is modified in the setup and solve routines.
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realtype SUNLinSol_SuperLUDIST_GetBerr (SUNLinearSolver LS)

This function returns the componentwise relative backward error of the computed solution. It takes one argument,
the SUNLinearSolver object. The return type is realtype.

gridinfo_t *SUNLinSol_SuperLUDIST_GetGridinfo (SUNLinearSolver LS)

This function returns a pointer to the SuperLU_DIST structure that contains the 2D process grid. It takes one
argument, the SUNLinearSolver object.

xLUstruct_t *SUNLinSol_SuperLUDIST_GetLUstruct (SUNLinearSolver LS)

This function returns a pointer to the SuperLU_DIST structure that contains the distributed L and U structures.
It takes one argument, the SUNLinearSolver object.

superlu_dist_options_t *SUNLinSol_SuperLUDIST_GetSuperLUOptions (SUNLinearSolver LS)

This function returns a pointer to the SuperLU_DIST structure that contains the options which control how the
linear system is factorized and solved. It takes one argument, the SUNLinearSolver object.

xScalePermstruct_t *SUNLinSol_SuperLUDIST_GetScalePermstruct (SUNLinearSolver LS)

This function returns a pointer to the SuperLU_DIST structure that contains the vectors that describe the trans-
formations done to the matrix A. It takes one argument, the SUNLinearSolver object.

xSOLVEstruct_t *SUNLinSol_SuperLUDIST_GetSOLVEstruct (SUNLinearSolver LS)

This function returns a pointer to the SuperLU_DIST structure that contains information for communication
during the solution phase. It takes one argument the SUNLinearSolver object.

SuperLUStat_t *SUNLinSol_SuperLUDIST_GetSuperLUStat (SUNLinearSolver LS)

This function returns a pointer to the SuperLU_DIST structure that stores information about runtime and flop
count. It takes one argument, the SUNLinearSolver object.

8.15.2 SUNLinSol_SuperLUDIST Description

The SUNLinSol_SuperLUDIST module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUDIST {

booleantype first_factorize;
int last_flag;
realtype berr;

gridinfo_t *grid;
xLUstruct_t *1u;
superlu_dist_options_t *options;
xScalePermstruct_t *scaleperm;
xSOLVEstruct_t “solve;
SuperLUStat_t *stat;
sunindextype N;

e

These entries of the content field contain the following information:
o first_factorize — flag indicating whether the factorization has ever been performed,
e last_flag - last error return flag from internal function evaluations,
* berr - the componentwise relative backward error of the computed solution,
* grid — pointer to the SuperLU_DIST structure that strores the 2D process grid

¢ 1u - pointer to the SuperLU_DIST structure that stores the distributed L and U factors,
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* scaleperm — pointer to the SuperLU_DIST structure that stores vectors describing the transformations done to
the matrix A,

* options — pointer to the SuperLU_DIST stucture which contains options that control how the linear system is
factorized and solved,

* solve — pointer to the SuperLU_DIST solve structure,
e stat — pointer to the SuperLU_DIST structure that stores information about runtime and flop count,
* N — the number of equations in the system.

The SUNLinSol_SuperLUDIST module is a SUNLinearSolver adapter for the SuperLU_DIST sparse matrix factor-
ization and solver library written by X. Sherry Li and collaborators [7, 35, 49, 50]. The package uses a SPMD parallel
programming model and multithreading to enhance efficiency in distributed-memory parallel environments with multi-
core nodes and possibly GPU accelerators. It uses MPI for communication, OpenMP for threading, and CUDA for GPU
support. In order to use the SUNLinSol_SuperLUDIST interface to SuperLU_DIST, it is assumed that SuperLU_DIST
has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appro-
priately to link with SuperLU_DIST (see §11.1.4 for details). Additionally, the wrapper only supports double-precision
calculations, and therefore cannot be compiled if SUNDIALS is configured to use single or extended precision. More-
over, since the SuperLU_DIST library may be installed to support either 32-bit or 64-bit integers, it is assumed that the
SuperLU_DIST library is installed using the same integer size as SUNDIALS.

The SuperLU_DIST library provides many options to control how a linear system will be factorized and solved. These
options may be set by a user on an instance of the superlu_dist_options_t struct, and then it may be provided as
an argument to the SUNLinSol_SuperLUDIST constructor. The SUNLinSol_SuperLUDIST module will respect all
options set except for Fact — this option is necessarily modified by the SUNLinSol_SuperLUDIST module in the setup
and solve routines.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUDIST module is constructed to perform the following operations:

» The first time that the “setup” routine is called, it sets the SuperLU_DIST option Fact to DOFACT so that a
subsequent call to the “solve” routine will perform a symbolic factorization, followed by an initial numerical
factorization before continuing to solve the system.

* On subsequent calls to the “setup” routine, it sets the SuperLU_DIST option Fact to SamePattern so that a
subsequent call to “solve” will perform factorization assuming the same sparsity pattern as prior, i.e. it will reuse
the column permutation vector.

 If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to the sparse triangular solves, and, potentially,
iterative refinement. If “setup” is not called prior, “solve” will skip to the triangular solve step. We note that in
this solve SuperLU_DIST operates on the native data arrays for the right-hand side and solution vectors, without
requiring costly data copies.

The SUNLinSol_SuperLUDIST module defines implementations of all “direct” linear solver operations listed in §8.1:
e SUNLinSolGetType_SuperLUDIST

e SUNLinSolInitialize_SuperLUDIST - this sets the first_factorize flag to 1 and resets the internal Su-
perLU_DIST statistics variables.

e SUNLinSolSetup_SuperLUDIST - this sets the appropriate SuperLU_DIST options so that a subsequent solve
will perform a symbolic and numerical factorization before proceeding with the triangular solves

e SUNLinSolSolve_SuperLUDIST — this calls the SuperLU_DIST solve routine to perform factorization (if the
setup routine was called prior) and then use the $LU$ factors to solve the linear system.

e SUNLinSolLastFlag_SuperLUDIST
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e SUNLinSolSpace_SuperLUDIST — this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements, see the
SuperLU_DIST documentation.

e SUNLinSolFree_SuperLUDIST

8.16 The SUNLinSol_SuperLUMT Module

The SUNLinSol_SuperLUMT implementation of the SUNLinearSolver class interfaces with the SuperLU_MT li-
brary. This is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the se-
rial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_-
PTHREADS). While these are compatible, it is not recommended to use a threaded vector module with SUNLinSol_-
SuperLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library has also been compiled with
OpenMP.

8.16.1 SUNLinSol_SuperLUMT Usage

The header file to be included when using this module is sunlinsol/sunlinsol.SuperLUMT.h. The installed mod-
ule library to link to is libsundials_sunlinsolsuperlumt ./ib where .lib is typically .so for shared libraries and
. a for static libraries.

The module SUNLinSol_SuperLUMT provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SuperLUMT (N_Vector y, SUNMatrix A, int num_threads, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_SuperLUMT object.
Arguments:

* y —atemplate vector.
* A —atemplate matrix

* num_threads — desired number of threads (OpenMP or Pthreads, depending on how SuperLU_MT was
installed) to use during the factorization steps.

* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess compat-
ibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The num_threads argument is not checked and is passed directly to SuperLU_MT routines.

int SUNLinSol_SuperLUMTSetOrdering (SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve.

Arguments:

e § —the SUNLinSol_SuperLUMT object to update.
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e ordering_choice:
0. natural ordering
1. minimal degree ordering on AT A
2. minimal degree ordering on AT + A
3. COLAMD ordering for unsymmetric matrices
The default is 3 for COLAMD.
Return value:
» SUNLS_SUCCESS — option successfully set
¢ SUNLS_MEM_NULL — S is NULL
e SUNLS_ILL_INPUT - invalid ordering_choice

For backwards compatibility, we also provide the following wrapper functions, each with identical input and output

arguments to the routines that they wrap:

SUNLinearSolver SUNSuperLUMT (N_Vector y, SUNMatrix A, int num_threads)

Wrapper for SUNLinSol_SuperLUMT().

and

int SUNSuperLUMTSetOrdering (SUNLinearSolver S, int ordering_choice)

Wrapper for SUNLinSol_SuperLUMTSetOrdering().

8.16.2 SUNLinSol_SuperLUMT Description

The SUNLinSol_SuperLUMT module defines the confent field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUMT {

int last_flag;

int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t “Gstat;

sunindextype *perm_r, *perm_c;
sunindextype N;

int num_threads;
realtype diag_pivot_thresh;
int ordering;

superlumt_options_t *options;

e

These entries of the confent field contain the following information:

* last_flag - last error return flag from internal function evaluations,

e first_factorize - flag indicating whether the factorization has ever been performed,

* A, AC, L, U, B- SuperMatrix pointers used in solve,
e Gstat - GStat_t object used in solve,

e perm_r, perm_c - permutation arrays used in solve,

* N - size of the linear system,

e num_threads - number of OpenMP/Pthreads threads to use,
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e diag_pivot_thresh - threshold on diagonal pivoting,
* ordering - flag for which reordering algorithm to use,
* options - pointer to SuperLU_MT options structure.

The SUNLinSol_SuperLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix factoriza-
tion and solver library written by X. Sherry Li and collaborators [8, 28, 48]. The package performs matrix factorization
using threads to enhance efficiency in shared memory parallel environments. It should be noted that threads are only
used in the factorization step. In order to use the SUNLinSol_SuperLUMT interface to SuperLU_MT, it is assumed
that SuperLU_MT has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with SuperLU_MT (see §11.1.4 for details). Additionally, this wrapper only supports
single- and double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have re-
altype set to extended (see §4.1 for details). Moreover, since the SuperLU_MT library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the SuperLU_MT library is installed using the same integer precision
as the SUNDIALS sunindextype option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal degree ordering on A7 x A, minimal
degree ordering on AT + A, or natural ordering). Of these ordering choices, the default value in the SUNLinSol_-
SuperLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUMT module is constructed to perform the following operations:

» The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

* On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input matrix.

* The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side and
solution vectors, without requiring costly data copies.

The SUNLinSol_SuperLUMT module defines implementations of all “direct” linear solver operations listed in §8.1:
e SUNLinSolGetType_SuperLUMT

e SUNLinSolInitialize_SuperLUMT - this sets the first_factorize flag to 1 and resets the internal Su-
perLU_MT statistics variables.

* SUNLinSolSetup_SuperLUMT - this performs either a LU factorization or refactorization of the input matrix.

* SUNLinSolSolve_SuperLUMT - this calls the appropriate SuperLU_MT solve routine to utilize the LU factors
to solve the linear system.

e SUNLinSolLastFlag_SuperLUMT

* SUNLinSolSpace_SuperLUMT - this only returns information for the storage within the solver interface, i.e.
storage for the integers last_flag and first_factorize. For additional space requirements, see the Su-
perLU_MT documentation.

e SUNLinSolFree_SuperLUMT
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8.17 The SUNLinSol_cuSolverSp_batchQR Module

The SUNLinSol_cuSolverSp_batchQR implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_CUSPARSE matrix, and the NVECTOR_CUDA vector. The header file to include when using this
module is sunlinsol/sunlinsol_cusolversp_batchqr.h. The installed library to link to is libsundials_-
sunlinsolcusolversp.lib where .1ib is typically .so for shared libraries and . a for static libraries.

Warning: The SUNLinearSolver_cuSolverSp_batchQR module is experimental and subject to change.

8.17.1 SUNLinSol_cuSolverSp_batchQR description

The SUNLinearSolver_cuSolverSp_batchQR implementation provides an interface to the batched sparse QR factor-
ization method provided by the NVIDIA cuSOLVER library [5]. The module is designed for solving block diagonal
linear systems of the form

Ay O 0
0 A, 0

. .| @i =10y
0 0 A,

where all block matrices A; share the same sparsity pattern. The matrix must be the SUNMatrix.cuSparse.

8.17.2 SUNLIinSol_cuSolverSp_batchQR functions

The SUNLinearSolver_cuSolverSp_batchQR module defines implementations of all “direct” linear solver opera-
tions listed in §8.1:

e SUNLinSolGetType_cuSolverSp_batchQR
e SUNLinSolInitialize_cuSolverSp_batchQR — this sets the first_factorize flagto 1

e SUNLinSolSetup_cuSolverSp_batchQR — this always copies the relevant SUNMATRIX_SPARSE data to the
GPU; if this is the first setup it will perform symbolic analysis on the system

* SUNLinSolSolve_cuSolverSp_batchQR — this calls the cusolverSpXcsrqrsvBatched routine to perform
factorization

e SUNLinSolLastFlag_cuSolverSp_batchQR
e SUNLinSolFree_cuSolverSp_batchQR
In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_cuSolverSp_batchQR(N_Vector y, SUNMatrix A, cusolverHandle_t cusol,
SUNContext sunctx)

The function SUNLinSol_cuSolverSp_batchQR creates and allocates memory for a SUNLinearSolver object.
Arguments:

* y —a vector for checking compatibility with the solver.

* A —a SUNMATRIX_cuSparse matrix for checking compatibility with the solver.

* cusol — cuSolverSp object to use.

* sunctx —the SUNContext object (see §4.2)
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Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_CUSPARSE matrix type and
the NVECTOR_CUDA vector type. Since the SUNMATRIX_CUSPARSE matrix type is only compatible
with the NVECTOR_CUDA the restriction is also in place for the linear solver. As additional compatible
matrix and vector implementations are added to SUNDIALS, these will be included within this compati-
bility check.

void SUNLinSol_cuSolverSp_batchQR_GetDescription(SUNLinearSolver LS, char **desc)
The function SUNLinSol_cuSolverSp_batchQR_GetDescription accesses the string description of the ob-
ject (empty by default).

void SUNLinSol_cuSolverSp_batchQR_SetDescription(SUNLinearSolver LS, const char *desc)
The function SUNLinSol_cuSolverSp_batchQR_SetDescription sets the string description of the object
(empty by default).

void SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace (SUNLinearSolver S, size_t *cuSolverInternal, size_t

*cuSolverWorkspace)

The function SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace returns the cuSOLVER batch QR method
internal buffer size, in bytes, in the argument cuSolverInternal and the cuSOLVER batch QR workspace
buffer size, in bytes, in the agrument cuSolverWorkspace. The size of the internal buffer is proportional to the
number of matrix blocks while the size of the workspace is almost independent of the number of blocks.

8.17.3 SUNLinSol_cuSolverSp_batchQR content

The SUNLinSol_cuSolverSp_batchQR module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {

int last_flag; /* last return flag %/
booleantype first_factorize; /* is this the first factorization? */
size_t internal_size; /% size of cusolver buffer for Q and R 4
size_t workspace_size; /* size of cusolver memory for factorization */
cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */
csrqrinfo_t info; /* opaque cusolver data structure %/
void* workspace; /* memory block used by cusolver Sy
const char* desc; /* description of this linear solver %/

};

8.18 The SUNLINEARSOLVER_GINKGO Module

New in version 6.4.0.

The SUNLINEARSOLVER_GINKGO implementation of the SUNLinearSolver API provides an interface to the
linear solvers from the Ginkgo linear algebra library [10]. Since Ginkgo is a modern C++ library, SUNLINEAR-
SOLVER_GINKGO is also written in modern C++ (specifically, C++14). Unlike most other SUNDIALS modules, it
is a header only library. To use the SUNLINEARSOLVER_GINKGO SUNLinearSolver, users will need to include
sunlinsol/sunlinsol_ginkgo.hpp. The module is meant to be used with the SUNMATRIX_GINKGO module
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described in §7.10. Instructions on building SUNDIALS with Ginkgo enabled are given in §11.1.4. For instructions
on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note: It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo linear solvers, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS. Most, if
not all, of the Ginkgo linear solver should work with this interface.

8.18.1 Using SUNLINEARSOLVER_GINKGO

After choosing a compatible N_Vector (see §7.10.1) and creating a Ginkgo-enabled SUNMatrix (see §7.10) to use
the SUNLINEARSOLVER_GINKGO module, we first create a Ginkgo stopping criteria object. Importantly, the sun-
dials::ginkgo: :DefaultStop class provided by SUNDIALS implements a stopping critierion that matches the
default SUNDIALS stopping critierion. Namely, it checks if the max iterations (5 by default) were reached or if the ab-
solute residual norm was below a speicified tolerance. The critierion can be created just like any other Ginkgo stopping
criteria:

auto crit{sundials::ginkgo::DefaultStop::build() .with_max_iters(max_iters).on(gko_exec)};

Warning: It is highly recommended to employ this criterion when using Ginkgo solvers with SUNDIALS, but
it is optional. However, to use the Ginkgo multigrid or cbgmres linear solvers, different Ginkgo criterion must be
used.

Once we have created our stopping critierion, we create a Ginkgo solver factory object and wrap it in a sundi-
als::ginkgo: :LinearSolver object. In this example, we create a Ginkgo conjugate gradient solver:

using GkoMatrixType = gko::matrix::Csr<sunrealtype, sunindextype>;
using GkoSolverType = gko::solver::Cg<sunrealtype>;

auto gko_solver_factory = gko::share(
GkoSolverType: :build() .with_criteria(std: :move(crit)) .on(gko_exec));

sundials: :ginkgo: :LinearSolver<GkoSolverType, GkoMatrixType> LS{
gko_solver_factory, sunctx};

Finally, we can pass the instance of sundials: :ginkgo::LinearSolver to any function expecting a SUNLinear-
Solver object through the implicit conversion operator or explicit conversion function.

// Attach linear solver and matrix to CVODE.

//

// Implicit conversion from sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType>
// to a SUNLinearSolver object is done.

//

// For details about creating A see the SUNMATRIX_GINKGO module.

CVodeSetLinearSolver (cvode_mem, LS, A);

// Alternatively with explicit conversion of LS to a SUNLinearSolver
// and A to a SUNMatrix:
CVodeSetLinearSolver(cvode_mem, LS->Convert(), A->Convert());
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Warning: SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion
from a sundials::ginkgo: :LinearSolver. Doing so may result in a double free.

8.18.2 SUNLINEARSOLVER_GINKGO API

In this section we list the public API of the sundials: :ginkgo: :LinearSolver class.

template<class GkoSolverType, class GkoMatrixType>
class LinearSolver : public ConvertibleTo<SUNLinearSolver>

LinearSolver () = default;
Default constructor - means the solver must be moved to.

LinearSolver (std::shared_ptr<typename GkoSolverType::Factory> gko_solver_factory, SUNContext sunctx)
Constructs a new LinearSolver from a Ginkgo solver factory.

Parameters

» gko_solver_factory - The Ginkgo solver factory (typically
gko::matrix::<type>::Factory")

¢ sunctx — The SUNDIALS simulation context (SUNContext)

LinearSolver (LinearSolver &&that_solver) noexcept

Move constructor.
LinearSolver &operator=_(LinearSolver &&rhs)

Move assignment.
~LinearSolver () override = default

Default destructor.
operator SUNLinearSolver() override

Implicit conversion to a SUNLinearSolver.
operator SUNLinearSolver() const override

Implicit conversion to a SUNLinearSolver.
SUNLinearSolver Convert () override

Explicit conversion to a SUNLinearSolver.
SUNLinearSolver Convert () const override

Explicit conversion to a SUNLinearSolver.
std::shared_ptr<const gko::Executor> GkoExec () const

Get the gko: :Executor associated with the Ginkgo solver.
std::shared_ptr<typename GkoSolverType::Factory> GkoFactory ()

Get the underlying Ginkgo solver factory.
GkoSolverType *GkoSolver ()

Get the underlying Ginkgo solver.

Note: This will be nullptr until the linear solver setup phase.
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int NumIters() const

Get the number of linear solver iterations in the most recent solve.
sunrealtype ResNorm() const

Get the residual norm of the solution at the end of the last solve.

The type of residual norm depends on the Ginkgo stopping criteria used with the solver. With the De-
faultStop criteria this would be the absolute residual 2-norm.

GkoSolverType *Setup (Matrix<GkoMatrixType> *A)
Setup the linear system.

Parameters
A — the linear system matrix

Returns
Pointer to the Ginkgo solver generated from the factory

gko::LinOp *Solve (N_Vector b, N_Vector x, sunrealtype tol)
Solve the linear system Ax = b to the specificed tolerance.
Parameters
* b — the right-hand side vector
* x — the solution vector
¢ tol - the tolerance to solve the system to

Returns
gko: :LinOp* the solution

8.19 The SUNLINEARSOLVER_KOKKOSDENSE Module

New in version 6.4.0.

The SUNLINEARSOLVER_KOKKOSDENSE SUNLinearSolver implementation provides an interface to
KokkosKernels [57] linear solvers for dense and batched dense (block-diagonal) systems. Since Kokkos is a mod-
ern C++ library, the module is also written in modern C++ (it requires C++14) as a header only library. To utilize
this SUNLinearSolver user will need to include sunlinsol/sunlinsol_kokkosdense.hpp. More instructions on
building SUNDIALS with Kokkos and KokkosKernels enabled are given in §11.1.4. For instructions on building and
using Kokkos and KokkosKernels, refer to the Kokkos and KokkosKernels. documentation.

8.19.1 Using SUNLINEARSOLVER_KOKKOSDENSE

The SUNLINEARSOLVER_KOKKOSDENSE module is defined by the DenseLinearSolver templated class in the
sundials: :kokkos namespace:

template<class ExecSpace = Kokkos::DefaultExecutionSpace,
class MemSpace = typename ExecSpace::memory_space>
class DenseLinearSolver : public sundials::impl::BaselLinearSolver,
public sundials::ConvertibleTo<SUNLinearSolver>

To use the SUNLINEARSOLVER_KOKKOSDENSE module, we begin by constructing an instance of a dense linear
solver e.g.,
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// Create a dense linear solver
sundials: :kokkos: :DenseLinearSolver<> LS{sunctx};

Instances of the DenseLinearSolver class are implicitly or explicitly (using the Convert () method) convertible to
a SUNLinearSolvere.g.,

sundials: :kokkos: :DenseLinearSolver<> LS{sunctx};
SUNLinearSolver LSA = LS; // implicit conversion to SUNLinearSolver
SUNLinearSolver LSB = LS.Convert(); // explicit conversion to SUNLinearSolver

Warning: SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion
from a sundials: :kokkos: :DenseLinearSolver. Doing so may result in a double free.

The SUNLINEARSOLVER_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module
(see §6.14) and SUNMATRIX_KOKKOSDENSE matrix module (see §7.11).

8.19.2 SUNLINEARSOLVER_KOKKOSDENSE API

In this section we list the public API of the sundials: :kokkos: :DenseLinearSolver class.

template<class ExecSpace = Kokkos::DefaultExecutionSpace, class MemSpace = typename
ExecSpace::memory_space>

class DenseLinearSolver : public sundials::impl::BaseLinearSolver, public
sundials::ConvertibleTo< SUNLinearSolver>

DenseLinearSolver () = default;
Default constructor - means the solver must be moved to.

DenseLinearSolver (SUNContext sunctx)
Constructs a new DenseLinearSolver.

Parameters
sunctx — The SUNDIALS simulation context (SUNContext)

DenseLinearSolver (DenseLinearSolver &&that_solver) noexcept

Move constructor.

DenseLinearSolver &operator=_(DenseLinearSolver &&rhs)
Move assignment.
~DenseLinearSolver () override = default

Default destructor.

operator SUNLinearSolver() override

Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override

Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert () override

Explicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert () const override

Explicit conversion to a SUNLinearSolver.
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8.20 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the functions
in test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver family of modules.
The inputs to the examples depend on the linear solver type, and are output to stdout if the example is run without
the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:

Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.
Test_SUNLinSolGetID: Verifies the returned solver identifier against the value that should be returned.
Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns successfully.
Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

Test_SUNLinSolSolve: Given a SUNMatrix object A, N_Vector objects x and b (where Ax = b) and a
desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve to fill y as the
solution to Ay = b (to the input tolerance), verifies that each entry in = and y match to within 10*tol, and
overwrites x with y prior to returning (in case the calling routine would like to investigate further).

Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be called and
returns successfully.

Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.

Test_SUNLinSolSetZeroGuess (iterative solvers only): Verifies that SUNLinSolSetZeroGuess can be called
and returns successfully.

Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result to std-
out.

Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called, and out-
puts the result to stdout.

Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called, and that the
result is non-negative.

Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to stdout.

We'll note that these tests should be performed in a particular order. For either direct or iterative linear solvers, Test_-
SUNLinSolInitialize must be called before Test_SUNLinSolSetup, which must be called before Test_SUNLin-
SolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes, Test_SUNLinSolSetPrecondi-
tioner and Test_SUNLinSolSetScalingVectors should be called before Test_SUNLinSolInitialize; sim-
ilarly Test_SUNLinSolNumIters, Test_SUNLinSolResNorm and Test_SUNLinSolResid should be called after
Test_SUNLinSolSolve. These are called in the appropriate order in all of the example problems.
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Chapter 9

Nonlinear Algebraic Solvers

SUNDIALS time integration packages are written in terms of generic nonlinear solver operations defined by the SUN-
NonlinSol API and implemented by a particular SUNNonlinSol module of type SUNNonlinearSolver. Users can
supply their own SUNNonlinSol module, or use one of the modules provided with SUNDIALS. Depending on the pack-
age, nonlinear solver modules can either target system presented in a rootfinding (F(y) = 0) or fixed-point (G(y) = y)
formulation. For more information on the formulation of the nonlinear system(s) see the §9.2 section.

The time integrators in SUNDIALS specify a default nonlinear solver module and as such this chapter is intended
for users that wish to use a non-default nonlinear solver module or would like to provide their own nonlinear solver
implementation. Users interested in using a non-default solver module may skip the description of the SUNNonlinSol
APT in section §9.1 and proceeded to the subsequent sections in this chapter that describe the SUNNonlinSol modules
provided with SUNDIALS.

For users interested in providing their own SUNNonlinSol module, the following section presents the SUNNonlinSol
API and its implementation beginning with the definition of SUNNonlinSol functions in the sections §9.1.1, §9.1.2
and §9.1.3. This is followed by the definition of functions supplied to a nonlinear solver implementation in the section
§9.1.4. The nonlinear solver return codes are given in the section §9.1.5. The SUNNonlinearSolver type and the
generic SUNNonlinSol module are defined in the section §9.1.6. Finally, the section §9.1.7 lists the requirements for
supplying a custom SUNNonlinSol module. Users wishing to supply their own SUNNonlinSol module are encouraged
to use the SUNNonlinSol implementations provided with SUNDIALS as a template for supplying custom nonlinear
solver modules.

9.1 The SUNNonlinearSolver API

The SUNNonlinSol API defines several nonlinear solver operations that enable SUNDIALS integrators to utilize any
SUNNonlinSol implementation that provides the required functions. These functions can be divided into three cate-
gories. The first are the core nonlinear solver functions. The second consists of “set” routines to supply the nonlinear
solver with functions provided by the SUNDIALS time integrators and to modify solver parameters. The final group
consists of “get” routines for retrieving nonlinear solver statistics. All of these functions are defined in the header file
sundials/sundials_nonlinearsolver.h.
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9.1.1 SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type
(SUNNonlinsSolGetType()) and solve the nonlinear system (SUNNonlinSolSolve()). The remaining three func-
tions for nonlinear solver initialization (SUNNonlinSolInitialization()), setup (SUNNonlinSolSetup()), and
destruction (SUNNonlinSolFree()) are optional.

SUNNonlinearSolver_Type SUNNonlinSolGetType (SUNNonlinearSolver NLS)
This required function returns the nonlinear solver type.
Arguments:
* NLS — a SUNNonlinSol object.

Return value:
The SUNNonlinSol type identifier (of type int) will be one of the following:

* SUNNONLINEARSOLVER_ROOTFIND - @, the SUNNonlinSol module solves F'(y) = 0.
* SUNNONLINEARSOLVER_FIXEDPOINT - 1, the SUNNonlinSol module solves G(y) = y.
int SUNNonlinSolInitialize (SUNNonlinearSolver NLS)

This optional function handles nonlinear solver initialization and may perform any necessary memory alloca-
tions.

Arguments:
e NLS — a SUNNonlinSol object.

Return value:
The return value is zero for a successful call and a negative value for a failure.

Notes:
Itis assumed all solver-specific options have been set prior to calling SUNNonlinSolInitialize (). SUN-
NonlinSol implementations that do not require initialization may set this operation to NULL.

int SUNNonlinSolSetup (SUNNonlinearSolver NLS, N_Vector y, void *mem)

This optional function performs any solver setup needed for a nonlinear solve.
Arguments:

* NLS — a SUNNonlinSol object.

» y —the initial guess passed to the nonlinear solver.

* mem — the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful call and a negative value for a failure.

Notes:
SUNDIALS integrators call SUNonlinSolSetup() before each step attempt. SUNNonlinSol implemen-
tations that do not require setup may set this operation to NULL.

int SUNNonlinSolSolve (SUNNonlinearSolver NLS, N_Vector y0, N_Vector ycor, N_Vector w, realtype tol,
booleantype callLSetup, void *mem)

This required function solves the nonlinear system F'(y) = 0 or G(y) = y.
Arguments:
e NLS — a SUNNonlinSol object.

¢ y0 — the predicted value for the new solution state. This must remain unchanged throughout the solution
process.
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* ycor — on input the initial guess for the correction to the predicted state (zero) and on output the final
correction to the predicted state.

* w — the solution error weight vector used for computing weighted error norms.
* tol — the requested solution tolerance in the weighted root-mean-squared norm.

* callLSetup — a flag indicating that the integrator recommends for the linear solver setup function to be
called.

» mem — the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successul solve, a positive value for a recoverable error (i.e., the solve failed and
the integrator should reduce the step size and reattempt the step), and a negative value for an unrecoverable
error (i.e., the solve failed the and the integrator should halt and return an error to the user).

int SUNNonlinSolFree (SUNNonlinearSolver NLS)
This optional function frees any memory allocated by the nonlinear solver.
Arguments:
e NLS — a SUNNonlinSol object.

Return value:
The return value should be zero for a successful call, and a negative value for a failure. SUNNonlinSol
implementations that do not allocate data may set this operation to NULL.

9.1.2 SUNNonlinearSolver “‘set” functions

The following functions are used to supply nonlinear solver modules with functions defined by the SUNDIALS inte-
grators and to modify solver parameters. Only the routine for setting the nonlinear system defining function (SUNNon-
linSolSetSysFn()) is required. All other set functions are optional.

int SUNNonlinSolSetSysFn(SUNNonlinearSolver NLS, SUNNonlinSolSysFn SysFn)

This required function is used to provide the nonlinear solver with the function defining the nonlinear system.
This is the function F(y) in F(y) = 0 for SUNNONLINEARSOLVER_ROOTFIND modules or G(y) in G(y) = y for
SUNNONLINEARSOLVER_FIXEDPOINT modules.

Arguments:
e NLS — a SUNNonlinSol object.

* SysFn — the function defining the nonlinear system. See §9.1.4 for the definition of SUNNonIinSol-
SysFn.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolSetLSetupFn(SUNNonlinearSolver NLS, SUNNonlinSolLSetupFn SetupFn)

This optional function is called by SUNDIALS integrators to provide the nonlinear solver with access to its linear
solver setup function.

Arguments:
e NLS — a SUNNonlinSol object.

o SetupFn — a wrapper function to the SUNDIALS integrator’s linear solver setup function. See §9.1.4
for the definition of SUNNonlinSolLSetupFn.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.
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Notes:
The SUNNonlinSolLSetupFn function sets up the linear system Az = b where A = %—5 is the linearization
of the nonlinear residual function F'(y) = 0 (when using SUNLinSol direct linear solvers) or calls the user-
defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlinSol
implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may set this operation to NULL.

int SUNNonlinSolSetLSolveFn(SUNNonlinearSolver NLS, SUNNonlinSolLSolveFn SolveFn)

This optional function is called by SUNDIALS integrators to provide the nonlinear solver with access to its linear
solver solve function.

Arguments:
e NLS — a SUNNonlinSol object.

* SolveFn — a wrapper function to the SUNDIALS integrator’s linear solver solve function. See §9.1.4
for the definition of SUNNonlinSolLSolveFn.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.

Notes:
oF

The SUNNonlinSolLSolveFn function solves the linear system Az = b where A = By 18 the linearization

of the nonlinear residual function F'(y) = 0. SUNNonlinSol implementations that do not require solving
this system or do not use SUNLinSol linear solvers may set this operation to NULL.

int SUNNonlinSolSetConvTestFn(SUNNonlinearSolver NLS, SUNNonlinSolConvTestFn CTestFn, void
*ctest_data)

This optional function is used to provide the nonlinear solver with a function for determining if the nonlinear
solver iteration has converged. This is typically called by SUNDIALS integrators to define their nonlinear con-
vergence criteria, but may be replaced by the user.

Arguments:
* NLS — a SUNNonlinSol object.

e CTestFn — a SUNDIALS integrator’s nonlinear solver convergence test function. See §9.1.4 for the
definition of SUNNonlinSolConvTestFn.

* ctest_data — is a data pointer passed to CTestFn every time it is called.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.

Notes:
SUNNonlinSol implementations utilizing their own convergence test criteria may set this function to NULL.

int SUNNonlinSolSetMaxIters (SUNNonlinearSolver NLS, int maxiters)

This optional function sets the maximum number of nonlinear solver iterations. This is typically called by
SUNDIALS integrators to define their default iteration limit, but may be adjusted by the user.

Arguments:
e NLS — a SUNNonlinSol object.
¢ maxiters — the maximum number of nonlinear iterations.

Return value:
The return value should be zero for a successful call, and a negative value for a failure (e.g., maxiters < 1).
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9.1.3 SUNNonlinearSolver “get” functions

The following functions allow SUNDIALS integrators to retrieve nonlinear solver statistics. The routines to get the
number of iterations in the most recent solve (SUNNonlinSolGetNumIters()) and number of convergence failures
are optional. The routine to get the current nonlinear solver iteration (SUNNonlinSolGetCurIter()) is required when
using the convergence test provided by the SUNDIALS integrator or when using an iterative SUNLinSol linear solver
module; otherwise SUNNonlinSolGetCurIter() is optional.

int SUNNonlinSolGetNumIters (SUNNonlinearSolver NLS, long int *niters)

This optional function returns the number of nonlinear solver iterations in the most recent solve. This is typically
called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also be called by the user.

Arguments:
e NLS — a SUNNonlinSol object.
e niters — the total number of nonlinear solver iterations.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolGetCurIter (SUNNonlinearSolver NLS, int *iter)

This function returns the iteration index of the current nonlinear solve. This function is required when using
SUNDIALS integrator-provided convergence tests or when using an iterative SUNLinSol linear solver module;
otherwise it is optional.

Arguments:
e NLS — a SUNNonlinSol object.
* iter — the nonlinear solver iteration in the current solve starting from zero.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolGetNumConvFails (SUNNonlinearSolver NLS, long int *nconvfails)

This optional function returns the number of nonlinear solver convergence failures in the most recent solve. This
is typically called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also be called by
the user.

Arguments:
e NLS — a SUNNonlinSol object.
* nconvfails — the total number of nonlinear solver convergence failures.

Return value:
The return value should be zero for a successful call, and a negative value for a failure.

9.1.4 Functions provided by SUNDIALS integrators

To interface with SUNNonlinSol modules, the SUNDIALS integrators supply a variety of routines for evaluating the
nonlinear system, calling the SUNLinSol setup and solve functions, and testing the nonlinear iteration for convergence.
These integrator-provided routines translate between the user-supplied ODE or DAE systems and the generic interfaces
to the nonlinear or linear systems of equations that result in their solution. The functions provided to a SUNNonlinSol
module have types defined in the header file sundials/sundials_nonlinearsolver.h; these are also described
below.

9.1. The SUNNonlinearSolver API 391



User Documentation for IDAS, v5.5.1

typedef int (*SUNNonlinSolSysFn)(N_Vector ycor, N_Vector F, void *mem)

These functions evaluate the nonlinear system F'(y) for SUNNONLINEARSOLVER_ROOTFIND type modules or
G(y) for SUNNONLINEARSOLVER_FIXEDPOINT type modules. Memory for F must by be allocated prior to
calling this function. The vector ycor will be left unchanged.

Arguments:
* ycor —is the current correction to the predicted state at which the nonlinear system should be evaluated.
 F —is the output vector containing F'(y) or G(y), depending on the solver type.
* mem — is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successul solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
SUNDIALS integrators formulate nonlinear systems as a function of the correction to the predicted solu-
tion. On each call to the nonlinear system function the integrator will compute and store the current solution
based on the input correction. Additionally, the residual will store the value of the ODE right-hand side
function or DAE residual used in computing the nonlinear system. These stored values are then directly
used in the integrator-supplied linear solver setup and solve functions as applicable.

typedef int (*SUNNonlinSolLSetupFn)(booleantype jbad, booleantype *jcur, void *mem)
These functions are wrappers to the SUNDIALS integrator’s function for setting up linear solves with SUNLinSol
modules.

Arguments:

* jbad —is an input indicating whether the nonlinear solver believes that A has gone stale (SUNTRUE) or
not (SUNFALSE).

e jeur — is an output indicating whether the routine has updated the Jacobian A (SUNTRUE) or not
(SUNFALSE).

e mem — is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successul solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
The SUNNonlinSolLSetupFn function sets up the linear system Az = b where A = %—I; is the linearization
of the nonlinear residual function F'(y) = 0 (when using SUNLinSol direct linear solvers) or calls the user-
defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlinSol
implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver setup function assumes that the
nonlinear system function has been called prior to the linear solver setup function as the setup will utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).

typedef int (*SUNNonlinSolLSolveFn)(N_Vector b, void *mem)

These functions are wrappers to the SUNDIALS integrator’s function for solving linear systems with SUNLinSol
modules.

Arguments:

* b — contains the right-hand side vector for the linear solve on input and the solution to the linear system
on output.
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* mem — is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successul solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
OF

The SUNNonlinSolLSolveFn function solves the linear system Az = b where A = By 1 the linearization

of the nonlinear residual function F'(y) = 0. SUNNonlinSol implementations that do not require solving
this system or do not use SUNLinSol linear solvers may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver solve function assumes that the
nonlinear system function has been called prior to the linear solver solve function as the setup may utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).

typedef int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N_Vector ycor, N_Vector del, realtype tol,
N_Vector ewt, void *ctest_data)

These functions are SUNDIALS integrator-specific convergence tests for nonlinear solvers and are typically
supplied by each SUNDIALS integrator, but users may supply custom problem-specific versions as desired.

Arguments:
e NLS —is the SUNNonlinSol object.
* ycor — is the current correction (nonlinear iterate).
* del —is the difference between the current and prior nonlinear iterates.
* tol —is the nonlinear solver tolerance.
* ewt —is the weight vector used in computing weighted norms.
* ctest_data — is the data pointer provided to SUNNonlinSolSetConvTestFn().

Return value:
The return value of this routine will be a negative value if an unrecoverable error occurred or one of the
following:

e SUN_NLS_SUCCESS - the iteration is converged.
» SUN_NLS_CONT